Skip to main content

A Review on Dynamic Balancing and Link Shape Synthesis of Planar Mechanisms

  • Conference paper
  • First Online:
Mechanism and Machine Science

Abstract

This paper reviews the various methods developed for balancing of the planar mechanisms and synthesizing the link shapes. The methods discussed in this paper are used for complete force balance, complete force and moment balance, partial force and moment balance as well as for the link shape synthesis of different planar mechanisms. The concepts, applications, and limitations of various methods are discussed and reviewed from the available literature in the area of mechanism balancing. The better understanding of available methods will definitely help the researchers working in this area in analyzing the current practices and in developing the new methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kamenskii VA (1968) On the questions of the balancing of plane linkages. J Mech 3(4):303–322

    Article  Google Scholar 

  2. Lowen GG, Berkof RS (1968) Survey of investigations into the balancing of linkages. Mech Mach Theory 3(4):221–231

    Google Scholar 

  3. Lowen GG, Tepper FR, Berkof RS (1983) Balancing of linkages—an update. Mech Mach Theory 18(3):213–220

    Article  Google Scholar 

  4. Kochev IS (2000) General theory of complete shaking moment balancing of planar linkages: a critical review. Mech Mach Theory 35:1501–1514

    Article  MathSciNet  MATH  Google Scholar 

  5. Arakelian VH, Smith MR (2005) Shaking force and shaking moment balancing of mechanisms: a historical review with new examples. ASME J Mech Des 127:334–339

    Article  Google Scholar 

  6. Wijk VV, Herder JL, Demeulenaere B (2009) Comparison of various dynamic balancing principles regarding additional mass and additional inertia. ASME J Mech Robot 1:041006-1–9

    Google Scholar 

  7. Arakelian V, Briot S (2015) Balancing of linkages and robot manipulators—advanced methods with illustrative examples. Springer International Publishing

    Google Scholar 

  8. Shchepetilnikov VA (1968) The determination of the mass centres of mechanisms in connection with the problem of mechanism balancing. Mech Mach Theory 3(4):367–389

    Google Scholar 

  9. Berkof RS, Lowen GG (1969) A New method for completely force balancing simple linkages. ASME J Eng Ind 91(1):21–26

    Article  Google Scholar 

  10. Tepper FR, Lowen GG (1972) General theorems concerning full force balancing of planar linkages by internal mass redistribution. ASME J Eng for Ind 94(3):789–796

    Article  Google Scholar 

  11. Walker MJ, Oldham K (1978) A General theory of force balancing using counterweights. Mech Mach Theory 13:175–185

    Article  Google Scholar 

  12. Walker MJ, Oldham K (1979) Extensions to the theory of balancing frame forces in planar linkages. Mech Mach Theory 14:201–207

    Google Scholar 

  13. Kochev IS (1988) A new general method for full force balancing of planar linkages. Mech Mach Theory 23(6):475–480

    Google Scholar 

  14. Smith M (1975) Dynamic analysis and balancing of linkages with interactive computer graphics. Comput Aided Des 7(1):15–19

    Article  Google Scholar 

  15. Han C (1967) Balancing of high speed machinery. ASME J Eng Ind 89(1):111–117

    Article  Google Scholar 

  16. Chiou ST, Davies TH (1997) Partial cancellation of shaking force harmonics by cam modification. Proc Inst Mech Eng. Part C: J Mech Eng Sci 211:253–263

    Google Scholar 

  17. Ouyang PR, Li Q, Zhang WJ (2003) Integrated design of robotic mechanisms for force balancing and trajectory tracking. Mechatronics 13:887–905

    Article  Google Scholar 

  18. Ouyang PR, Zhang WJ (2005) Force balancing of robotic mechanisms based on adjustment of kinematic parameters. ASME J Mech Des 127(3):433–440

    Article  Google Scholar 

  19. Lowen GG, Tepper FR, Berkof RS (1974) The quantitative influence of complete force balancing on the forces and moments of certain families of four-bar linkages. Mech Mach Theory 9:299–323

    Article  Google Scholar 

  20. Feng G (1990) Complete shaking force and shaking moment balancing of 26 types of four-, five- and six-bar linkages with prismatic pairs. Mech Mach Theory 25(2):183–192

    Article  Google Scholar 

  21. Feng G (1991) Complete shaking force and shaking moment balancing of 17 types of eight-bar linkages only with revolute pairs. Mech Mach Theory 26(2):197–206

    Article  Google Scholar 

  22. Chiou ST, Bai GJ, Chang WK (1998) Optimum balancing designs of the drag-link drive of mechanical presses for precision cutting. Int J Mach Tools Manuf 38(3):131–141

    Article  Google Scholar 

  23. Kamenskii VA (1968) On the problem of the number of counterweights in the balancing of plane linkages. J Mech 3(4):323–333

    Article  Google Scholar 

  24. Berkof RS (1973) Complete force and moment balancing of inline four-bar linkage. Mech Mach Theory 8:397–410

    Google Scholar 

  25. Tricamo SJ, Lowen GG (1983) A novel method for prescribing the maximum shaking force of a four-bar linkage with flexibility in counterweight design. J Mech, Trans, Autom Des 105:511–519

    Article  Google Scholar 

  26. Tricamo SJ, Lowen GG (1983) Simultaneous optimization of dynamic reactions of a four-bar linkage with prescribed maximum shaking force. J Mech, Trans, Autom Des 105:520–525

    Google Scholar 

  27. Esat I, Bahai H (1999) A theory of complete force and moment balancing of planar linkage mechanisms. Mech Mach Theory 34:903–922

    Article  MATH  Google Scholar 

  28. Ye Z, Smith MR (1994) Complete balancing of planar linkages by an equivalent method. Mech Mach Theory 29(5):701–712

    Article  Google Scholar 

  29. Arakelian VH, Smith MR (1999) Complete shaking force and shaking moment balancing of linkages. Mech Mach Theory 34:1141–1153

    Article  MATH  Google Scholar 

  30. Bagci C (1982) Complete shaking force and shaking moment balancing of link mechanisms using balancing idler loops. ASME J Mech Des 104:482–493

    Google Scholar 

  31. Moore B (2009) Dynamic balancing of linkages by algebraic methods. PhD thesis, Research Institute for Symbolic Computation, Johannes-Kepler University Linz, Austria

    Google Scholar 

  32. Elliott JL, Tesar D (1977) The theory of torque, shaking force, and shaking moment balancing of four link mechanisms. ASME J Eng Ind 99(3):715–722

    Article  Google Scholar 

  33. Elliott JL, Tesar D (1982) A general mass balancing method for complex planar mechanisms. Mech Mach Theory 17(2):153–172

    Article  Google Scholar 

  34. Kochev IS (1992) Active balancing of the frame shaking moment in high speed planar machines. Mech Mach Theory 27(1):53–58

    Article  Google Scholar 

  35. Arakelian VH (2006) Shaking moment cancellation of self-balanced slider-crank mechanical systems by means of optimum mass redistribution. Mech Res Commun 33:846–850

    Article  MATH  Google Scholar 

  36. Arakelian VH, Briot S (2010) Simultaneous inertia force/moment balancing and torque compensation of slider-crank mechanisms. Mech Res Commun 37:265–269

    Article  MATH  Google Scholar 

  37. Bagci C (1979) Shaking force balancing of planar linkages with force transmission irregularities using balancing idler loops. Mech Mach Theory 14(4):267–284

    Article  Google Scholar 

  38. Dresig H, Dien NP (2011) Complete shaking force and shaking moment balancing of mechanisms using a moving rigid body. Tech Mech 31(2):121–131

    Google Scholar 

  39. Gosselin CM, Moore B, Schicho J (2009) Dynamic balancing of planar mechanisms using toric geometry. J Symb Comput 44:1346–1358

    Google Scholar 

  40. Raghu E, Balasubramonian A (1990) Experimental study on the elastodynamic behavior of the unbalanced and the counterweighted four-bar mechanisms. J Mech Des 112(3):271–277

    Google Scholar 

  41. Xi F, Sinatra R (1997) Effect of dynamic balancing on four-bar linkage vibrations. Mech Mach Theory 32(6):715–728

    Article  Google Scholar 

  42. Martini A, Troncossi M, Rivola A (2013) Elastodynamic effects of mass-balancing: experimental investigation of a four-bar linkage. Adv Mech Eng 1–10

    Google Scholar 

  43. Martini A, Troncossi M, Carricato M, Rivola A (2014) Elastodynamic behavior of balanced closed-loop mechanisms: numerical analysis of a four-bar linkage. Meccanica 49(3):601–614

    Article  MATH  Google Scholar 

  44. Norton RL (2011) Kinematics and dynamics of machinery. Tata McGraw Hill Education Private Limited, New Delhi, India

    Google Scholar 

  45. Stevensen EN (1973) Balancing of machines. ASME J Eng Ind, 650–656

    Google Scholar 

  46. Tsai L (1984) Oldham-coupling second-harmonic balancer. ASME J Mech, Trans, Autom Des 106(3):285–290

    Article  Google Scholar 

  47. Davies TH, Niu GH (1994) On the retrospective balancing of installed planar mechanisms. Proc Inst Mech Eng. Part C: J Mech Eng Sci 208:39–45

    Google Scholar 

  48. Arakelian V, Dahan M (2001) Partial shaking moment balancing of fully force balanced linkages. Mech Mach Theory 36:1241–1252

    Article  MATH  Google Scholar 

  49. Berkof RS, Lowen GG (1971) Theory of shaking moment optimization of forced-balanced four-bar linkages. ASME J Eng Ind 93B(1):53–60

    Article  Google Scholar 

  50. Lowen GG, Berkof RS (1971) Determination of force-balanced four-bar linkages with optimum shaking moment characteristics. J Eng Ind 39–46

    Google Scholar 

  51. Carson WL, Stephenes JM (1978) Feasible parameter design spaces for force and root-mean-square moment balancing an in-line 4r 4-bar synthesized for kinematic criteria. Mech Mach Theory 13:649–658

    Article  Google Scholar 

  52. Haines RS (1981) Minimum RMS shaking moment or driving torque of a force-balanced 4-bar linkage using feasible counterweights. Mech Mach Theory 16(3):185–195

    Article  Google Scholar 

  53. Tepper FR, Lowen GG (1975) Shaking force optimization of four-bar linkage with adjustable constraints on ground bearing forces. ASME J Eng Ind, 643–651

    Google Scholar 

  54. Demeulenaere B (2004) Dynamic balancing of reciprocating machinery with application to weaving machines. PhD thesis, Department of Mechanical Engineering, University of Leuven, Belgium

    Google Scholar 

  55. Demeulenaere B, Aertbelien E, Verschuure M, Swevers J, Schutter JD (2006) Ultimate limits for counterweight balancing of crank-rocker four-bar linkages. ASME J Mech Des 128:1272–1284

    Article  Google Scholar 

  56. Demeulenaere B, Swevers J, Schutter JD (2004) A convex optimization framework for dynamic balancing of planar linkages. Proc. ISMA 1997–2010

    Google Scholar 

  57. Demeulenaere B, Verschuure M, Swevers J, Schutter JD (2010) A general and numerically efficient framework to design sector-type and cylindrical counterweights for balancing of planar linkages. ASME J Mech Des 132:011002(1–10)

    Google Scholar 

  58. Verschuure M (2009) Counterweight balancing of mechanisms using convex optimization techniques. PhD thesis, Department of Mechanical Engineering, University of Leuven, Belgium

    Google Scholar 

  59. Farmani MR, Jaamialahmadi A, Babaie M (2011) Multiobjective optimization for force and moment balance of a four-bar linkage using evolutionary algorithms. J Mech Sci Technol 25(12):2971–2977

    Article  Google Scholar 

  60. Gill GS, Freudenstein F (1983) Minimization of inertia-induced forces in spherical four-bar mechanisms. Part 1: the general spherical four-bar linkage. ASME J Mech, Trans, Autom Des 105:471–477

    Google Scholar 

  61. Gill GS, Freudenstein F (1983) Minimization of inertia-induced forces in spherical four-bar mechanisms. Part 2: wobble-plate engines. ASME J Mech, Trans, Autom Des 105:478–483

    Google Scholar 

  62. Rahman S (1996) Reduction of inertia-induced forces in a generalized spatial mechanism. PhD thesis, Department of Mechanical Engineering, The New Jersey Institute of Technology

    Google Scholar 

  63. Lee TW, Cheng C (1984) Optimum balancing of combined shaking force, shaking moment, and torque fluctuations in high speed linkages. ASME J Mech, Trans, Autom Des 106(2):242–251

    Article  Google Scholar 

  64. Lee TW, Freudenstein F (1976) Heuristic combinatorial optimization in the kinematic design of mechanisms; Part 1, theory. ASME J Eng Ind 98(4):1277–1280

    Article  Google Scholar 

  65. Lee TW, Freudenstein F (1976) Heuristic combinatorial optimization in the kinematic design of mechanisms; part 2, application. ASME J Eng Ind 98(4):1281–1284

    Article  Google Scholar 

  66. Wiederrich JL, Roth B (1976) Momentum balancing of four-bar linkages. ASME J Eng Ind 98(4):1289–1295

    Article  Google Scholar 

  67. Chaudhary H, Saha SK (2007) Balancing of four-bar linkages using maximum recursive dynamic algorithm. Mech Mach Theory 42(2):216–232

    Article  MathSciNet  MATH  Google Scholar 

  68. Chaudhary H, Saha SK (2008) Balancing of shaking forces and shaking moments for planar mechanisms using the equimomental systems. Mech Mach Theory 43:310–334

    Article  MATH  Google Scholar 

  69. Chaudhary H, Saha SK (2009) Dynamics and balancing of multibody systems. Springer-Verlag, Berlin

    Book  MATH  Google Scholar 

  70. Chaudhary H, Saha SK (2006) Equimomental system and its applications. In: Proceedings of 8th biennial ASME Conference on Engineering Systems Design and Analysis, Torino, Italy, 2006

    Google Scholar 

  71. Feng B, Morita N, Torii T (2002) A new optimization method for dynamic design of planar linkage with clearances at joints. ASME J Mech Des 124:68–73

    Article  Google Scholar 

  72. Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49(5):885–896

    Article  Google Scholar 

  73. Xie YM, Steven GP (1996) Evolutionary structural optimization for dynamic problems. Comput Struct 58(6):1067–1073

    Article  MATH  Google Scholar 

  74. Kim Y, Tan A, Yang B, Kim W, Choi B, An Y (2007) Optimum shape design of rotating shaft by ESO method. J Mech Sci Technol 21:1039–1047

    Article  Google Scholar 

  75. Azegami H, Zhou L, Umemura K, Kondo N (2013) Shape optimization for a link mechanism. Struct Multidiscip Optim 48(1):115–125

    Article  MathSciNet  MATH  Google Scholar 

  76. Xu D, Ananthasuresh GK (2003) Freeform skeletal shape optimization of compliant mechanisms. ASME J Mech Des 125:253–261

    Article  Google Scholar 

  77. Yoganand G, Sen D (2011) Link geometry synthesis for prescribed inertia. In: Proceedings of 15th national conference on machines and mechanisms, IIT Madras, India

    Google Scholar 

  78. Sen D, Chowdhury S, Pandey SR (2004) Geometric design of interference-free planar linkages. Mech Mach Theory 39:737–759

    Article  MathSciNet  MATH  Google Scholar 

  79. Sandor GN, Erdman AG (1984) Advanced Mechanism Design – Analysis and Synthesis, vol 2. Prentice Hall, New Jersey

    Google Scholar 

  80. Freudenstein F (2010) Approximate synthesis of four-bar linkages. Resonance 15(8):740–767

    Article  Google Scholar 

  81. Chaudhary K, Chaudhary H (2015) Optimal dynamic balancing and shape synthesis of links in planar mechanisms. Mech Mach Theory 93:127–146

    Article  Google Scholar 

  82. Chaudhary K, Chaudhary H (2014) Dynamic balancing of planar mechanisms using genetic algorithm. J Mech Sci Technol 28(10):4213–4220

    Article  Google Scholar 

  83. Chaudhary K, Chaudhary H (2015) Optimal design of planar slider-crank mechanism using teaching-learning-based optimization algorithm. J Mech Sci Technol 29(12):5189–5198

    Article  Google Scholar 

  84. Chaudhary K, Chaudhary H (2016) Optimal dynamic design of planar mechanisms using teaching-learning-based optimization algorithm. Proc Inst Mech Eng, Part C: J Mech Eng Sci 230(19):3442–3456

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajjan Singh Bajiya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bajiya, S.S., Chaudhary, K., Chaudhary, H. (2021). A Review on Dynamic Balancing and Link Shape Synthesis of Planar Mechanisms. In: Sen, D., Mohan, S., Ananthasuresh, G. (eds) Mechanism and Machine Science. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-4477-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4477-4_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4476-7

  • Online ISBN: 978-981-15-4477-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics