Skip to main content

Harvesting Energy from Chaotic Vibration

  • Conference paper
  • First Online:
Mechanism and Machine Science

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

  • 1261 Accesses

Abstract

This paper focuses on harvesting energy from chaotic vibration by attaching piezoelectric patches at the end of a cantilever beam. For more efficiently harvesting energy, the cantilever beam should be bistable and the majority of the trajectories should be of large amplitude orbit. The optimization problem of parameters is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kautz R (2011) Chaos the science of predictable random motion. Oxford University Press

    Google Scholar 

  2. Seneviratne LD, Earles SWE (1992) Chaotic behavior exhibited during contact loss in a clearance joint of a four-bar mechanism. Mech Mach Theory 27(3):307–321

    Article  Google Scholar 

  3. Belato D, Weber HI et al (2001) Chaotic vibrations of a nonideal electro-mechanical system. Int J Solids Struct 38(10–13):1699–1706

    Article  Google Scholar 

  4. Chang Z, Zhang C et al (2001) Bifurcation and chaos in linkage with a clearance. J Mech Strength 23(1):77–79

    Google Scholar 

  5. Wei D, Wang Y, Jiang T et al (2017) Chaos vibration of pinion and rack steering trapezoidal mechanism containing two clearances. Mech Syst Signal Process 92:146–155

    Article  Google Scholar 

  6. Taborda JA, Santini S et al (2009) Active chaos control of a cam-follower impacting system using FPIC technique. Proc IFAC 42(7):327–332

    Article  Google Scholar 

  7. Zhou J, Wang X et al (2015) Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam–roller–spring mechanisms. J Sound Vib 346:53–69

    Article  Google Scholar 

  8. Chang-Jian C-W, Chang S-M (2011) Bifurcation and chaos analysis of spur gear pair with and without nonlinear suspension. Nonlinear Anal Real World Appl 12(2):979–989

    Article  MathSciNet  Google Scholar 

  9. Farshidianfar A, Saghafi A (2014) Identification and control of chaos in nonlinear gear dynamic systems using Melnikov analysis. Phys Lett A 378(46):3457–3463

    Article  MathSciNet  Google Scholar 

  10. Saghafi A, Farshidianfar A (2016) An analytical study of controlling chaotic dynamics in a spur gear system. Mech Mach Theory 96:179–191

    Article  Google Scholar 

  11. Wang J, Zheng J et al (2012) An analytical study of bifurcation and chaos in a spur gear pair with sliding friction. Procedia Eng 31:563–570

    Article  Google Scholar 

  12. Xiang L, Gao N et al (2018) Dynamic analysis of a planetary gear system with multiple nonlinear parameters. J Comput Appl Math 327:325–340

    Article  MathSciNet  Google Scholar 

  13. Zhu Q, Ishitobi M (2006) Chaotic vibration of a nonlinear full-vehicle model. Int J Solids Struct 43(3):747–759

    Article  Google Scholar 

  14. Ehich FF (1991) Observation of chaotic vibration phenomena in high speed rotor dynamics. ASME J Vibrat Acoust 113:50–57

    Article  Google Scholar 

  15. Barszcz AT et al (2015) Modelling of a chaotic load of wind turbines drivetrain. Mech Syst Signal Process 54–55:491–505

    Google Scholar 

  16. Hadas Z, Singule V et al (2010) Development of energy harvesting sources for remote applications as mechatronic systems. In: Proceeding of 14th international power electronics and motion control conference

    Google Scholar 

  17. Priya S (2007) Advances in energy harvesting using low profile piezoelectric transducers. J Electroceram 19:167–184

    Article  Google Scholar 

  18. Cook-Chennault KA, Thambi N et al (2008) Powering MEMS portable devices: a review of non-regenerative and regenerative power supply systems with emphasis on piezoelectric energy harvesting system. Smart Mater Struct 17(4):043001

    Article  Google Scholar 

  19. Wickenheiser AM, Garcia E (2010) Broadband vibration-based energy harvesting improvement through frequency up-conversion by magnetic rectification. Smart Mater Struct 19(6):065020

    Article  Google Scholar 

  20. Eeturk A, Hoffmann J, Inman DJ (2009) A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl Phys Lett 94(25):254102

    Article  Google Scholar 

  21. Robinson RC (2004) An introduction to dynamical systems: continuous and discrete. Pearson Education, Inc

    Google Scholar 

  22. Eriture A, Inman DJ (2011) Piezoelectric energy harvesting. Wiley

    Google Scholar 

  23. De Paula AS, Inman DJ et al (2015) Energy harvesting in a nonlinear piezomagnetoelastic beam subjected to random excitation. Mech Syst Signal Process 54–55:405–416

    Google Scholar 

  24. Foupouapouognigni O, Nono Dueyou Buckjohn C et al (2018) Hybrid electromagnetic and piezoelectric vibration energy harvester with Gaussian white noise excitation. Phys A Stat Mech Appl 509:346–360

    Google Scholar 

  25. Guckenheimer J, holmes P (1983) Nonlinear oscillations, dynamical systems and bifurcations in vector field. Springer, New York

    Google Scholar 

  26. Zhang J-Q (2017) Design and analysis of energy harvesting with bistable piezoelectric cantilever beam for Duffing oscillator. M. E. Thesis, Southwest Jiaotong University, Chengdu, China (in Chinese)

    Google Scholar 

  27. Tran N, Ghayesh MH, Arjomandi M (2018) Ambient vibration energy harvesters: a review on nonlinear techniques for performance enhancement. Int J Eng Sci 127:162–185

    Article  MathSciNet  Google Scholar 

  28. Lan C, Tang L, Harne RL (2018) Comparative methods to assess harmonic response of nonlinear piezoelectric energy harvesters interfaced with AC and DC circuits. J Sound Vib 421:61–78

    Article  Google Scholar 

  29. Daqaq MF, Masana R et al (2014) On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion. ASME Appl Mech Rev 66:040801-1–040801-23

    Google Scholar 

  30. Geiyer D, Kauffman JL (2015) Chaotification as a means of broadband energy harvesting with piezoelectric materials. ASME J Vibrat Acoust 137:051005-1–051005-8

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of NSFC (National Natural Science Foundation of China) under the Grant No. 51575457.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Xie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xie, J., Zhang, Jq., Liu, Zh. (2021). Harvesting Energy from Chaotic Vibration. In: Sen, D., Mohan, S., Ananthasuresh, G. (eds) Mechanism and Machine Science. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-4477-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4477-4_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4476-7

  • Online ISBN: 978-981-15-4477-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics