Skip to main content

Full-Duplex Transceivers for Defense and Security Applications

  • Chapter
  • First Online:
Full-Duplex Communications for Future Wireless Networks

Abstract

The full-duplex (FD) radio technology that promises to improve the spectral efficiency of wireless communications was, however, initially used in continuous-wave (CW) radars by means of same-frequency simultaneous transmission and reception (SF-STAR). In this chapter, we explore how the recent advances in the FD technology, which have been mainly motivated by higher throughput in commercial networks, could in turn be used in defense and security applications, including CW radars and also electronic warfare (EW) systems. We suggest that, by integrating tactical communications with EW operations such as signals intelligence and jamming, multifunction military full-duplex radios (MFDRs) could provide a significant technical advantage to armed forces over an adversary that does not possess comparable technology. Similarly in the civilian domain, we examine the prospective benefits of SF-STAR concepts in security critical applications in the form of a radio shield.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Riihonen, D. Korpi, O. Rantula, H. Rantanen, T. Saarelainen, and M. Valkama, “Inband full-duplex radio transceivers: A paradigm shift in tactical communications and electronic warfare?” IEEE Communications Magazine, vol. 55, no. 10, pp. 30–36, Oct. 2017.

    Article  Google Scholar 

  2. K. Pärlin, T. Riihonen, R. Wichman, and D. Korpi, “Transferring the full-duplex radio technology from wireless networking to defense and security,” in Proc. 52nd Asilomar Conference on Signals, Systems and Computers, Oct. 2018.

    Google Scholar 

  3. A. Sabharwal, P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan, and R. Wichman, “In-band full-duplex wireless: Challenges and opportunities,” IEEE Journal on Selected Areas in Communications, vol. 32, no. 9, pp. 1637–1652, Sep. 2014.

    Article  Google Scholar 

  4. F. O’Hara and G. Moore, “A high performance CW receiver using feedthrough nulling,” Microwave Journal, vol. 6, pp. 63–71, Sep. 1963.

    Google Scholar 

  5. M. Adrat, R. Keller, S. Wilden, V. L. Nir, T. Riihonen, M. Bowyer, and K. Pärlin, “Full duplex radio: Increasing the spectral efficiency for military applications,” NATO, Tech. Rep., Jan. 2020.

    Google Scholar 

  6. M. Adrat, R. Keller, M. Tschauner, S. Wilden, V. L. Nir, T. Riihonen, M. Bowyer, and K. Pärlin, “Full-duplex radio technology – Increasing the spectral efficiency for military applications,” in Proc. International Conference on Military Communications and Information Systems, May 2019.

    Google Scholar 

  7. A. E. Spezio, “Electronic warfare systems,” IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 3, pp. 633–644, Mar. 2002.

    Article  Google Scholar 

  8. N. Suri, G. Benincasa, M. Tortonesi, C. Stefanelli, J. Kovach, R. Winkler, U. S. R. Kohler, J. Hanna, L. Pochet, and S. Watson, “Peer-to-peer communications for tactical environments: Observations, requirements, and experiences,” IEEE Communications Magazine, vol. 48, no. 10, pp. 60–69, Oct. 2010.

    Article  Google Scholar 

  9. S. M. Al-Shehri, P. Loskot, T. Numanoğlu, and M. Mert, “Comparing tactical and commercial MANETs design strategies and performance evaluations,” in Proc. IEEE Military Communications Conference, Oct. 2017, pp. 599–604.

    Google Scholar 

  10. R. Poisel, Modern Communications Jamming: Principles and Techniques. Artech House, 2011, pp. 5–10.

    Google Scholar 

  11. A. Mukherjee, S. A. A. Fakoorian, J. Huang, and A. L. Swindlehurst, “Principles of physical layer security in multiuser wireless networks: A survey,” IEEE Communications Surveys & Tutorials, vol. 16, no. 3, pp. 1550–1573, Aug. 2014.

    Article  Google Scholar 

  12. H. Saarnisaari and T. Bräysy, “Future military mobile radio communication systems from electronic warfare perspective,” in Proc. International Conference on Military Communications and Information Systems, May 2017.

    Google Scholar 

  13. G. Karawas, K. Goverdhanam, and J. Koh, “Wideband active interference cancellation techniques for military applications,” in Proc. 5th European Conference on Antennas and Propagation, Apr. 2011, pp. 390–392.

    Google Scholar 

  14. S. Enserink, M. P. Fitz, K. Goverdhanam, C. Gu, T. R. Halford, I. Hossain, G. Karawasy, and O. Y. Takeshita, “Joint analog and digital interference cancellation,” in Proc. IEEE MTT-S International Microwave Symposium, Jun. 2014.

    Google Scholar 

  15. T. Riihonen, D. Korpi, M. Turunen, T. Peltola, J. Saikanmäki, M. Valkama, and R. Wichman, “Tactical communication link under joint jamming and interception by same-frequency simultaneous transmit and receive radio,” in Proc. IEEE Military Communications Conference, Oct. 2018.

    Google Scholar 

  16. K. Pärlin, M. M. Alam, and Y. Le Moullec, “Jamming of UAV remote control systems using software defined radio,” in Proc. International Conference on Military Communications and Information Systems, May 2018.

    Google Scholar 

  17. M. Lichtman, J. D. Poston, S. Amuru, C. Shahriar, T. C. Clancy, R. M. Buehrer, and J. H. Reed, “A communications jamming taxonomy,” IEEE Security & Privacy, vol. 14, no. 1, pp. 47–54, Jan. 2016.

    Article  Google Scholar 

  18. S. Corson and J. Macker, “Mobile ad hoc networking (MANET): Routing protocol performance issues and evaluation considerations,” Jan. 1999.

    Google Scholar 

  19. J. L. Burbank, P. F. Chimento, B. K. Haberman, and W. T. Kasch, “Key challenges of military tactical networking and the elusive promise of MANET technology,” IEEE Communications Magazine, vol. 44, no. 11, Nov. 2006.

    Google Scholar 

  20. R. J. Fontana, “Recent system applications of short-pulse ultra-wideband (UWB) technology,” IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 9, pp. 2087–2104, Sep. 2004.

    Article  Google Scholar 

  21. S. S. Kolenchery, J. K. Townsend, and J. A. Freebersyser, “A novel impulse radio network for tactical military wireless communications,” in Proc. IEEE Military Communications Conference, vol. 1, Oct. 1998, pp. 59–65.

    Google Scholar 

  22. M. A. Alim, M. Kobayashi, S. Saruwatari, and T. Watanabe, “In-band full-duplex medium access control design for heterogeneous wireless LAN,” EURASIP Journal on Wireless Communications and Networking, vol. 2017, no. 1, p. 83, May 2017.

    Google Scholar 

  23. F. Tobagi and L. Kleinrock, “Packet switching in radio channels: part II–the hidden terminal problem in carrier sense multiple-access and the busy-tone solution,” IEEE Transactions on Communications, vol. 23, no. 12, pp. 1417–1433, Dec. 1975.

    Article  MATH  Google Scholar 

  24. C.-s. Wu and V. Li, “Receiver-initiated busy-tone multiple access in packet radio networks,” in ACM SIGCOMM Computer Communication Review, vol. 17, no. 5, Aug. 1987, pp. 336–342.

    Google Scholar 

  25. K. Xu, M. Gerla, and S. Bae, “How effective is the IEEE 802.11 RTS/CTS handshake in ad hoc networks,” in Proc. IEEE Global Telecommunications Conference, vol. 1, Nov. 2002, pp. 72–76.

    Google Scholar 

  26. N. Singh, D. Gunawardena, A. Proutiere, B. Radunovi, H. V. Balan, and P. Key, “Efficient and fair MAC for wireless networks with self-interference cancellation,” in International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks, May 2011, pp. 94–101.

    Google Scholar 

  27. K. M. Thilina, H. Tabassum, E. Hossain, and D. I. Kim, “Medium access control design for full duplex wireless systems: challenges and approaches,” IEEE Communications Magazine, vol. 53, no. 5, pp. 112–120, May 2015.

    Article  Google Scholar 

  28. D. Kim, H. Lee, and D. Hong, “A survey of in-band full-duplex transmission: From the perspective of PHY and MAC layers,” IEEE Communication Surveys and Tutorials, vol. 17, no. 4, pp. 2017–2046, Q4 2015.

    Google Scholar 

  29. J. P. Monks, J.-P. Ebert, A. Wolisz, and W.-M. W. Hwu, “A study of the energy saving and capacity improvement potential of power control in multi-hop wireless networks,” in Proc. 26th Annual IEEE Conference on Local Computer Networks, Nov. 2001, pp. 550–559.

    Google Scholar 

  30. W. Choi, H. Lim, and A. Sabharwal, “Power-controlled medium access control protocol for full-duplex WiFi networks,” IEEE Transactions on Wireless Communications, vol. 14, no. 7, pp. 3601–3613, Jul. 2015.

    Article  Google Scholar 

  31. T. Riihonen, S. Werner, and R. Wichman, “Hybrid full-duplex/half-duplex relaying with transmit power adaptation,” IEEE Transactions on Wireless Communications, vol. 10, no. 9, pp. 3074–3085, Sep. 2011.

    Article  Google Scholar 

  32. N. Patwari, J. Croft, S. Jana, and S. K. Kasera, “High-rate uncorrelated bit extraction for shared secret key generation from channel measurements,” IEEE Transactions on Mobile Computing, vol. 9, no. 1, p. 17, Jan. 2010.

    Google Scholar 

  33. S. N. Premnath, S. Jana, J. Croft, P. L. Gowda, M. Clark, S. K. Kasera, N. Patwari, and S. V. Krishnamurthy, “Secret key extraction from wireless signal strength in real environments,” IEEE Transactions on Mobile Computing, vol. 12, no. 5, pp. 917–930, May 2013.

    Article  Google Scholar 

  34. S. Gollakota and D. Katabi, “Physical layer wireless security made fast and channel independent,” in Proc. IEEE INFOCOM, Apr. 2011.

    Google Scholar 

  35. R. Jin, X. Du, Z. Deng, K. Zeng, and J. Xu, “Practical secret key agreement for full-duplex near field communications,” IEEE Transactions on Mobile Computing, vol. 15, no. 4, pp. 938–951, Apr. 2016.

    Article  Google Scholar 

  36. R. Bassily, E. Ekrem, X. He, E. Tekin, J. Xie, M. R. Bloch, S. Ulukus, and A. Yener, “Cooperative security at the physical layer: A summary of recent advances,” IEEE Signal Processing Magazine, vol. 30, no. 5, pp. 16–28, Sep. 2013.

    Article  Google Scholar 

  37. S. L. Cotton, W. G. Scanlon, and B. K. Madahar, “Millimeter-wave soldier-to-soldier communications for covert battlefield operations,” IEEE Communications Magazine, vol. 47, no. 10, pp. 72–81, Oct. 2009.

    Article  Google Scholar 

  38. Y.-W. P. Hong, P.-C. Lan, and C.-C. J. Kuo, “Enhancing physical-layer secrecy in multiantenna wireless systems: An overview of signal processing approaches,” IEEE Signal Processing Magazine, vol. 30, no. 5, pp. 29–40, Sep. 2013.

    Article  Google Scholar 

  39. A. Nasipuri, S. Ye, J. You, and R. E. Hiromoto, “A MAC protocol for mobile ad hoc networks using directional antennas,” in IEEE Wireless Communications and Networking Conference, vol. 3, Sep. 2000, pp. 1214–1219.

    Google Scholar 

  40. R. R. Choudhury, X. Yang, R. Ramanathan, and N. H. Vaidya, “On designing MAC protocols for wireless networks using directional antennas,” IEEE Transactions on Mobile Computing, vol. 5, no. 5, pp. 477–491, May 2006.

    Article  Google Scholar 

  41. T. Korakis, G. Jakllari, and L. Tassiulas, “CDR-MAC: A protocol for full exploitation of directional antennas in ad hoc wireless networks,” IEEE Transactions on Mobile Computing, vol. 7, no. 2, pp. 145–155, Feb. 2008.

    Article  Google Scholar 

  42. K. M. Leong, Y. Wang, and T. Itoh, “A full duplex capable retrodirective array system for high-speed beam tracking and pointing applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 5, pp. 1479–1489, May 2004.

    Article  Google Scholar 

  43. S. Goel and R. Negi, “Guaranteeing secrecy using artificial noise,” IEEE Transactions on Wireless Communications, vol. 7, no. 6, pp. 2180–2189, Jun. 2008.

    Article  Google Scholar 

  44. K. Miura and M. Bandai, “Node architecture and MAC protocol for full duplex wireless and directional antennas,” in Proc. 23rd International Symposium on Personal, Indoor and Mobile Radio Communications, Sep. 2012, pp. 369–374.

    Google Scholar 

  45. F. Zhu, F. Gao, M. Yao, and H. Zou, “Joint information- and jamming-beamforming for physical layer security with full duplex base station,” IEEE Transactions on Signal Processing, vol. 62, no. 24, pp. 6391–6401, Dec. 2014.

    Article  MathSciNet  MATH  Google Scholar 

  46. M. A. Richards, J. Scheer, W. A. Holm, and W. L. Melvin, Principles of modern radar. Institution of Engineering and Technology, 2010.

    Google Scholar 

  47. B. Paul, A. Chiriyath, and D. Bliss, “Survey of RF communications and sensing convergence research,” IEEE Access, vol. 5, no. 99, pp. 252–270, Dec. 2016.

    Google Scholar 

  48. M. P. Fitz, T. R. Halford, I. Hossain, and S. W. Enserink, “Towards simultaneous radar and spectral sensing,” in Proc. IEEE International Symposium on Dynamic Spectrum Access Networks, Apr. 2014, pp. 15–19.

    Google Scholar 

  49. M. Jamil, H.-J. Zepernick, and M. I. Pettersson, “On integrated radar and communication systems using Oppermann sequences,” in Proc. IEEE Military Communications Conference, Oct. 2008.

    Google Scholar 

  50. C. Sturm and W. Wiesbeck, “Waveform design and signal processing aspects for fusion of wireless communications and radar sensing,” Proceedings of the IEEE, vol. 99, no. 7, pp. 1236–1259, Jul. 2011.

    Article  Google Scholar 

  51. L. Han and K. Wu, “Joint wireless communication and radar sensing systems–state of the art and future prospects,” IET Microwaves, Antennas & Propagation, vol. 7, no. 11, pp. 876–885, Aug. 2013.

    Article  Google Scholar 

  52. R. N. Lothes, M. B. Szymanski, and R. G. Wiley, Radar vulnerability to jamming. Artech House, 1990.

    Google Scholar 

  53. L. Neng-Jing and Z. Yi-Ting, “A survey of radar ECM and ECCM,” IEEE Transactions on Aerospace and Electronic Systems, vol. 31, no. 3, pp. 1110–1120, Jul. 1995.

    Article  Google Scholar 

  54. S. Roome, “Digital radio frequency memory,” Electronics & Communication Engineering Journal, vol. 2, no. 4, pp. 147–153, Aug. 1990.

    Article  Google Scholar 

  55. M. Greco, F. Gini, and A. Farina, “Radar detection and classification of jamming signals belonging to a cone class,” IEEE Transactions on Signal Processing, vol. 56, no. 5, pp. 1984–1993, May 2008.

    Article  MathSciNet  MATH  Google Scholar 

  56. T. Ulversoy, “Software defined radio: Challenges and opportunities,” IEEE Communications Surveys & Tutorials, vol. 12, no. 4, pp. 531–550, Oct. 2010.

    Article  Google Scholar 

  57. A. Feickert, “The joint tactical radio system (JTRS) and the army’s future combat system (FCS): Issues for congress,” Congressional Research Service, Tech. Rep. RL33161, 2005.

    Google Scholar 

  58. R. North, N. Browne, and L. Schiavone, “Joint tactical radio system – connecting the GIG to the tactical edge,” in Proc. IEEE Military Communications Conference, Oct. 2006.

    Google Scholar 

  59. B. Perlman, J. Laskar, and K. Lim, “Fine-tuning commercial and military radio design,” IEEE Microwave Magazine, vol. 9, no. 4, Aug. 2008.

    Google Scholar 

  60. P. K. Hughes and J. Y. Choe, “Overview of advanced multifunction RF system (AMRFS),” in Proc. IEEE International Conference on Phased Array Systems and Technology, May 2000, pp. 21–24.

    Google Scholar 

  61. G. C. Tavik, C. L. Hilterbrick, J. B. Evins, J. J. Alter, J. G. Crnkovich, J. W. de Graaf, W. Habicht, G. P. Hrin, S. A. Lessin, D. C. Wu et al., “The advanced multifunction RF concept,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 3, pp. 1009–1020, Mar. 2005.

    Article  Google Scholar 

  62. J. A. Molnar, I. Corretjer, and G. Tavik, “Integrated topside-integration of narrowband and wideband array antennas for shipboard communications,” in Proc. IEEE Military Communications Conference, Oct. 2011, pp. 1802–1807.

    Google Scholar 

  63. M. Parent, D. Taylor, G. Tavik, M. Kluskens, and J. Valenzi, “RF isolation of separate transmit and receive phased array antennas in a multifunction environment,” in Proc. Antenna Application Symposium, vol. 2, Sep. 2001, pp. 413–442.

    Google Scholar 

  64. M. Wilhelm, I. Martinovic, J. B. Schmitt, and V. Lenders, “WiFire: a firewall for wireless networks,” in ACM SIGCOMM Computer Communication Review, vol. 41, no. 4, Aug. 2011, pp. 456–457.

    Google Scholar 

  65. P. C. Pinto, J. Barros, and M. Z. Win, “Secure communication in stochastic wireless networks–part II: Maximum rate and collusion,” IEEE Transactions on Information Forensics and Security, vol. 7, no. 1, pp. 139–147, Feb. 2012.

    Article  Google Scholar 

  66. T. Riihonen, D. Korpi, M. Turunen, T. Peltola, J. Saikanmäki, M. Valkama, and R. Wichman, “Military full-duplex radio shield for protection against adversary receivers,” in Proc. International Conference on Military Communications and Information Systems, May 2019.

    Google Scholar 

  67. T. Riihonen, D. Korpi, M. Turunen, and M. Valkama, “Full-duplex radio technology for simultaneously detecting and preventing improvised explosive device activation,” in Proc. International Conference on Military Communications and Information Systems, May 2018.

    Google Scholar 

  68. J. Saikanmäki, M. Turunen, M. Mäenpää, A.-P. Saarinen, and T. Riihonen, “Simultaneous jamming and RC system detection by using full-duplex radio technology,” in Proc. International Conference on Military Communications and Information Systems, May 2019.

    Google Scholar 

  69. K. Pärlin, T. Riihonen, and M. Turunen, “Sweep jamming mitigation using adaptive filtering for detecting frequency agile systems,” in Proc. International Conference on Military Communications and Information Systems, May 2019.

    Google Scholar 

  70. Y. Cai, F. R. Yu, J. Li, Y. Zhou, and L. Lamont, “Medium access control for unmanned aerial vehicle (UAV) ad-hoc networks with full-duplex radios and multipacket reception capability,” IEEE Transactions on Vehicular Technology, vol. 62, no. 1, pp. 390–394, Jan. 2013.

    Article  Google Scholar 

  71. I. Krikidis, S. Timotheou, S. Nikolaou, G. Zheng, D. W. K. Ng, and R. Schober, “Simultaneous wireless information and power transfer in modern communication systems,” IEEE Communications Magazine, vol. 52, no. 11, pp. 104–110, Nov. 2014.

    Article  Google Scholar 

  72. C. Zhong, H. A. Suraweera, G. Zheng, I. Krikidis, and Z. Zhang, “Wireless information and power transfer with full duplex relaying,” IEEE Transactions on Communications, vol. 62, no. 10, pp. 3447–3461, Oct. 2014.

    Article  Google Scholar 

  73. L. Zhao, X. Wang, and T. Riihonen, “Transmission rate optimization of full-duplex relay systems powered by wireless energy transfer,” IEEE Transactions on Wireless Communications, vol. 16, no. 10, pp. 6438–6450, Oct. 2017.

    Article  Google Scholar 

  74. Y. Ma, N. Selby, and F. Adib, “Drone relays for battery-free networks,” in Proc. Conference of the ACM Special Interest Group on Data Communication, Aug. 2017, pp. 335–347.

    Google Scholar 

  75. M. Mohammadi, B. K. Chalise, H. A. Suraweera, C. Zhong, G. Zheng, and I. Krikidis, “Throughput analysis and optimization of wireless-powered multiple antenna full-duplex relay systems,” IEEE Transactions on Communications, vol. 64, no. 4, pp. 1769–1785, Apr. 2016.

    Article  Google Scholar 

  76. M. Li, W. Lou, and K. Ren, “Data security and privacy in wireless body area networks,” IEEE Wireless Communications, vol. 17, no. 1, Feb. 2010.

    Google Scholar 

  77. S. Gollakota, H. Hassanieh, B. Ransford, D. Katabi, and K. Fu, “They can hear your heartbeats: Non-invasive security for implantable medical devices,” in ACM SIGCOMM Computer Communication Review, vol. 41, no. 4, Aug. 2011, pp. 2–13.

    Google Scholar 

  78. F. Xu, Z. Qin, C. C. Tan, B. Wang, and Q. Li, “IMDGuard: Securing implantable medical devices with the external wearable guardian,” in Proc. IEEE INFOCOM, Apr. 2011, pp. 1862–1870.

    Google Scholar 

  79. N. O. Tippenhauer, L. Malisa, A. Ranganathan, and S. Capkun, “On limitations of friendly jamming for confidentiality,” in IEEE Symposium on Security and Privacy, May 2013, pp. 160–173.

    Google Scholar 

  80. J. B. Kenney, “Dedicated short-range communications (DSRC) standards in the United States,” Proceedings of the IEEE, vol. 99, no. 7, pp. 1162–1182, Jul. 2011.

    Article  Google Scholar 

  81. K. Sjöberg, P. Andres, T. Buburuzan, and A. Brakemeier, “Cooperative intelligent transport systems in Europe: current deployment status and outlook,” IEEE Vehicular Technology Magazine, vol. 12, no. 2, pp. 89–97, Jun. 2017.

    Article  Google Scholar 

  82. M. Raya and J.-P. Hubaux, “Securing vehicular ad hoc networks,” Journal of computer security, vol. 15, no. 1, pp. 39–68, Jan. 2007.

    Article  Google Scholar 

  83. A. Bazzi, B. M. Masini, and A. Zanella, “Performance analysis of V2V beaconing using LTE in direct mode with full duplex radios,” IEEE Wireless Communications Letters, vol. 4, no. 6, pp. 685–688, Dec. 2015.

    Article  Google Scholar 

  84. C. Campolo, A. Molinaro, and A. O. Berthet, “Improving CAMs broadcasting in VANETs through full-duplex radios,” in IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications, Sep. 2016, pp. 1–6.

    Google Scholar 

  85. K. E. Kolodziej, B. T. Perry, and J. S. Herd, “Simultaneous transmit and receive (STAR) system architecture using multiple analog cancellation layers,” in IEEE MTT-S International Microwave Symposium, May 2015, pp. 1–4.

    Google Scholar 

  86. P. Kumari, J. Choi, N. González-Prelcic, and R. W. Heath, “IEEE 802.11 ad-based radar: An approach to joint vehicular communication-radar system,” IEEE Transactions on Vehicular Technology, vol. 67, no. 4, pp. 3012–3027, Apr. 2018.

    Article  Google Scholar 

  87. A. D. Wyner, “The wire-tap channel,” Bell System Technical Journal, vol. 54, no. 8, pp. 1355–1387, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  88. S. Leung-Yan-Cheong and M. Hellman, “The Gaussian wire-tap channel,” IEEE Transactions on Information Theory, vol. 24, no. 4, pp. 451–456, Jul. 1978.

    Article  MathSciNet  MATH  Google Scholar 

  89. A. O. Hero, “Secure space-time communication,” IEEE Transactions on Information Theory, vol. 49, no. 12, pp. 3235–3249, Dec. 2003.

    Article  MathSciNet  MATH  Google Scholar 

  90. L. Dong, Z. Han, A. P. Petropulu, and H. V. Poor, “Improving wireless physical layer security via cooperating relays,” IEEE Transactions on Signal Processing, vol. 58, no. 3, pp. 1875–1888, Mar. 2010.

    Article  MathSciNet  MATH  Google Scholar 

  91. G. Zheng, I. Krikidis, J. Li, A. P. Petropulu, and B. Ottersten, “Improving physical layer secrecy using full-duplex jamming receivers,” IEEE Transactions on Signal Processing, vol. 61, no. 20, pp. 4962–4974, Oct. 2013.

    Article  MathSciNet  MATH  Google Scholar 

  92. G. Chen, Y. Gong, P. Xiao, and J. A. Chambers, “Physical layer network security in the full-duplex relay system,” IEEE Transactions on Information Forensics and Security, vol. 10, no. 3, pp. 574–583, 2015.

    Article  Google Scholar 

  93. F. Zhu, F. Gao, T. Zhang, K. Sun, and M. Yao, “Physical-layer security for full duplex communications with self-interference mitigation,” IEEE Transactions on Wireless Communications, vol. 15, no. 1, pp. 329–340, Jan. 2016.

    Article  Google Scholar 

  94. A. Mukherjee and A. L. Swindlehurst, “A full-duplex active eavesdropper in MIMO wiretap channels: Construction and countermeasures,” in Proc. 45th Asilomar Conference on Signals, Systems and Computers, 2011, pp. 265–269.

    Google Scholar 

  95. X. Tang, P. Ren, Y. Wang, and Z. Han, “Combating full-duplex active eavesdropper: A hierarchical game perspective,” IEEE Transactions on Communications, vol. 65, no. 3, pp. 1379–1395, Mar. 2016.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karel Pärlin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pärlin, K., Riihonen, T. (2020). Full-Duplex Transceivers for Defense and Security Applications. In: Alves, H., Riihonen, T., Suraweera, H. (eds) Full-Duplex Communications for Future Wireless Networks. Springer, Singapore. https://doi.org/10.1007/978-981-15-2969-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2969-6_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2968-9

  • Online ISBN: 978-981-15-2969-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics