Skip to main content

Antenna/RF Design and Analog Self-Interference Cancellation

  • Chapter
  • First Online:
Full-Duplex Communications for Future Wireless Networks
  • 988 Accesses

Abstract

The main obstacle to full-duplex radios is self-interference (SI). To overcome SI, researchers have proposed several analog and digital domain self-interference cancellation (SIC) techniques. Digital cancellation has the following limitations: (1) It is only possible if the SI is sufficiently removed in the analog domain to fall within the dynamic range of an analog-to-digital converter (ADC). (2) It cannot mitigate the transmitter noise. Thus, analog cancellation plays an important role in a SIC scenario. This chapter provides an overview of current research activities on the analog cancellation scheme. Analog cancellation can be categorized into two classes—passive and active. In the passive analog cancellation, an RF component suppresses the SI. This can be implemented using a circulator or antenna separation. Leakages are cancelled by the active analog cancellation, which is based on a channel estimation of residual SI channel. The leakage from the passive cancellation can be matched by a signal generated from a tunable circuit or an auxiliary transmit chain. A key issue then in active analog cancellation is designing a circuit and optimization algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. J. A. Nelder and R. Mead, “A simplex method for function minimization,” The Computer Journal, vol. 7, no. 4, pp. 308–313, 1965.

    Article  MathSciNet  Google Scholar 

  2. C. Cox, Analog optical links. Cambridge, U.K: Cambridge Univ.Press, 2004.

    Google Scholar 

  3. J. I. Choi, M. Jain, K. Srinivasan, P. Levis, and S. Katti, “Achieving single channel, full duplex wireless communication,” in ACM Mobicom, Chicago, Illinois, USA, September 2010, pp. 20–24.

    Google Scholar 

  4. E. Aryafar, M. A. Khojastepour, K. Sundaresan, S. Rangarajan, and M. Chiang, “MIDU: enabling mimo full duplex,” in ACM Mobicom, Istanbul, Turkey, August 2012, pp. 22–26.

    Google Scholar 

  5. T. Oh, Y. Lim, C. Chae, and Y. Lee, “Dual-polarization slot antenna with high cross-polarization discrimination for indoor small-cell mimo systems,” IEEE Antennas and Wireless Propagation Letters, vol. 14, pp. 374–377, 2015.

    Article  Google Scholar 

  6. M. Chung, M. S. Sim, J. Kim, D. K. Kim, and C. Chae, “Prototyping real-time full duplex radios,” IEEE Communications Magazine, vol. 53, no. 9, pp. 56–63, 2015.

    Article  Google Scholar 

  7. J. G. McMichael and K. E. Kolodziej, “Optimal tuning of analog self-interference cancellers for full-duplex wireless communication,” in Allerton conference on communication, control and computing, Monticello, IL, USA, October 2012, 2012, pp. 1–5.

    Google Scholar 

  8. L. Anttila, D. Korpi, V. Syrjälä, and M. Valkama, “Cancellation of power amplifier induced nonlinear self-interference in full-duplex transceivers,” in Asilomar conference on signals, systems and computers, Pacific Grove, CA, November 2013, 2013, pp. 3–6.

    Google Scholar 

  9. A. Sahai, G. Patel, C. Dick, and A. Sabharwal, “On the impact of phase noise on active cancelation in wireless full-duplex,” IEEE Transactions on Vehicular Technology, vol. 62, no. 9, pp. 4494–4510, 2013.

    Article  Google Scholar 

  10. C. Cox and E. Ackerman, “Demonstration of a single-aperture, full-duplex communication system,” in Radio and wireless symposium (RWS), vol. 2013, Austin, TX, USA, January 2013, pp. 20–23.

    Google Scholar 

  11. C. Cox and E. Ackerman, “Tiprx: a transmit-isolating photonic receiver,” Journal of Lightwave Technology, vol. 32, no. 20, pp. 3630–3636, 2014.

    Article  Google Scholar 

  12. J. Chang and P. R. Prucnal, “A novel analog photonic method for broadband multipath interference cancellation,” IEEE Microwave and Wireless Components Letters, vol. 23, no. 7, pp. 377–379, 2013.

    Article  Google Scholar 

  13. D. Bharadia, E. McMilin, and S. Katti, “Full duplex radios,” pp. 12–16, August 2013.

    Google Scholar 

  14. D. Bharadia and S. Katti, “Full duplex mimo radios,” in USENIX symposium on networked systems design and implementation, Seattle WA, April 2014, 2014, pp. 2–4.

    Google Scholar 

  15. J. Kim, M. S. Sim, M. K. Chung, D. K. Kim, and C. Chae, Signal processing for 5G: algorithms and implementations. New York, NY, USA, p 539-560: Wiley, 2016.

    Google Scholar 

  16. M. P. Chang, C. Lee, B. Wu, and P. R. Prucnal, “Adaptive optical self-interference cancellation using a semiconductor optical amplifier,” IEEE Photonics Technology Letters, vol. 27, no. 9, pp. 1018–1021, 2016.

    Article  Google Scholar 

  17. W. Zhou, P. Xiang, Z. Niu, M. Wang, and S. Pan, “Wideband optical multipath interference cancellation based on a dispersive element,” IEEE Photonics Technology Letters, vol. 28, no. 8, pp. 849–851, 2016.

    Article  Google Scholar 

  18. D. Liu, Y. Shen, S. Shao, Y. Tang, and Y. Gong, “On the analog self-interference cancellation for full-duplex communications with imperfect channel state information,” IEEE Access, vol. 5, pp. 9277–9290, 2017.

    Article  Google Scholar 

  19. M. P. Chang, E. C. Blow, J. J. Sun, M. Z. Lu, and P. R. Prucnal, “Integrated microwave photonic circuit for self-interference cancellation,” IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 11, pp. 4493–4501, 2017.

    Article  Google Scholar 

  20. E. Everett, A. Sahai, and A. Sabharwal, “Passive self-interference suppression for full-duplex infrastructure nodes,” IEEE Transactions on Wireless Communications, vol. 13, no. 2, pp. 680–694, 2014.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chan-Byoung Chae .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kwak, J.W., Sim, M.S., Kang, IW., Park, J., Chae, CB. (2020). Antenna/RF Design and Analog Self-Interference Cancellation. In: Alves, H., Riihonen, T., Suraweera, H. (eds) Full-Duplex Communications for Future Wireless Networks. Springer, Singapore. https://doi.org/10.1007/978-981-15-2969-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2969-6_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2968-9

  • Online ISBN: 978-981-15-2969-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics