Skip to main content

Integrated Full-Duplex Radios: System Concepts, Implementations, and Experimentation

  • Chapter
  • First Online:
Full-Duplex Communications for Future Wireless Networks
  • 956 Accesses

Abstract

This chapter reviews recent research on integrated full-duplex (FD) radio systems using complementary metal oxide semiconductor (CMOS) technology. After a brief review of challenges associated with integrated FD radios, several CMOS FD radio designs, particularly those developed at Columbia University, are discussed with self-interference (SI) suppression at antenna interface, and in RF, analog, and digital domains. This chapter also reviews the system design and implementation of two generations of FD radios developed within the Columbia FlexICoN project (Columbia full-duplex wireless: From integrated circuits to networks (FlexICoN) project, https://flexicon.ee.columbia.edu) using off-the-shelf components and a software-defined radio (SDR) platform. The performance evaluation of these FD radios at the node- and link-level is also reviewed.

Ⓒ Portions of this chapter are reprinted from [2, 3], with permission from IEEE.

Tingjun Chen and Jin Zhou contributed equally to this work. Gil Zussman and Harish Krishnaswamy contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The SI channel here refers to the circulator TX–RX leakage after calibration of the USRP RF front-end.

  2. 2.

    We consider BPSK, QPSK, 16QAM, and 64QAM with coding rates of 1/2, 2/3, and 3/4.

References

  1. “Columbia full-duplex wireless: From integrated circuits to networks (FlexICoN) project,” https://flexicon.ee.columbia.edu, 2020.

  2. H. Krishnaswamy, G. Zussman, J. Zhou, J. Marašević, T. Dinc, N. Reiskarimian, and T. Chen, “Full-duplex in a hand-held device – from fundamental physics to complex integrated circuits, systems and networks: An overview of the Columbia FlexICoN project,” in Proc. Asilomar Conference on Signals, Systems and Computers, 2016.

    Google Scholar 

  3. J. Zhou, N. Reiskarimian, J. Diakonikolas, T. Dinc, T. Chen, G. Zussman, and H. Krishnaswamy, “Integrated full duplex radios,” IEEE Commun. Mag., vol. 55, no. 4, pp. 142–151, 2017.

    Article  Google Scholar 

  4. J. I. Choi, M. Jain, K. Srinivasan, P. Levis, and S. Katti, “Achieving single channel, full duplex wireless communication,” in Proc. ACM MobiCom’10, 2010.

    Google Scholar 

  5. M. Jain, J. I. Choi, T. Kim, D. Bharadia, S. Seth, K. Srinivasan, P. Levis, S. Katti, and P. Sinha, “Practical, real-time, full duplex wireless,” in Proc. ACM MobiCom’11, 2011.

    Google Scholar 

  6. M. Duarte, C. Dick, and A. Sabharwal, “Experiment-driven characterization of full-duplex wireless systems,” IEEE Trans. Wireless Commun., vol. 11, no. 12, 2012.

    Google Scholar 

  7. D. Bharadia, E. McMilin, and S. Katti, “Full duplex radios,” in Proc. ACM SIGCOMM’13, 2013.

    Google Scholar 

  8. M. Chung, M. S. Sim, J. Kim, D. K. Kim, and C.-B. Chae, “Prototyping real-time full duplex radios,” IEEE Commun. Mag., vol. 53, no. 9, pp. 56–63, 2015.

    Article  Google Scholar 

  9. D. Korpi, Y.-S. Choi, T. Huusari, L. Anttila, S. Talwar, and M. Valkama, “Adaptive nonlinear digital self-interference cancellation for mobile inband full-duplex radio: Algorithms and RF measurements,” in Proc. IEEE GLOBECOM’15, 2015.

    Google Scholar 

  10. D. Korpi, J. Tamminen, M. Turunen, T. Huusari, Y.-S. Choi, L. Anttila, S. Talwar, and M. Valkama, “Full-duplex mobile device: Pushing the limits,” IEEE Commun. Mag., vol. 54, no. 9, pp. 80–87, 2016.

    Article  Google Scholar 

  11. M. Duarte, A. Sabharwal, V. Aggarwal, R. Jana, K. Ramakrishnan, C. W. Rice, and N. Shankaranarayanan, “Design and characterization of a full-duplex multiantenna system for WiFi networks,” IEEE Trans. Veh. Technol., vol. 63, no. 3, pp. 1160–1177, 2014.

    Article  Google Scholar 

  12. M. S. Sim, M. Chung, D. Kim, J. Chung, D. K. Kim, and C.-B. Chae, “Nonlinear self-interference cancellation for full-duplex radios: From link-level and system-level performance perspectives,” IEEE Commun. Mag., vol. 55, no. 9, pp. 158–167, 2017.

    Article  Google Scholar 

  13. B. Debaillie, D. van den Broek, C. Lavin, B. van Liempd, E. Klumperink, C. Palacios, J. Craninckx, and A. Parssinen, “Analog/RF solutions enabling compact full-duplex radios,” IEEE J. Sel. Areas Commun., vol. 32, no. 9, pp. 1662–1673, 2014.

    Article  Google Scholar 

  14. N. Reiskarimian, T. Dinc, J. Zhou, T. Chen, M. B. Dastjerdi, J. Diakonikolas, G. Zussman, and H. Krishnaswamy, “One-way ramp to a two-way highway: Integrated magnetic-free nonreciprocal antenna interfaces for full-duplex wireless,” IEEE Microw. Mag., vol. 20, no. 2, pp. 56–75, 2019.

    Article  Google Scholar 

  15. D. Yang, H. Yüksel, and A. Molnar, “A wideband highly integrated and widely tunable transceiver for in-band full-duplex communication,” IEEE J. Solid-State Circuits, vol. 50, no. 5, pp. 1189–1202, 2015.

    Article  Google Scholar 

  16. D.-J. van den Broek, E. A. Klumperink, and B. Nauta, “An in-band full-duplex radio receiver with a passive vector modulator downmixer for self-interference cancellation,” IEEE J. Solid-State Circuits, vol. 50, no. 12, pp. 3003–3014, 2015.

    Article  Google Scholar 

  17. T. Dinc, A. Chakrabarti, and H. Krishnaswamy, “A 60GHz CMOS full-duplex transceiver and link with polarization-based antenna and RF cancellation,” IEEE J. Solid-State Circuits, vol. 51, no. 5, pp. 1125–1140, 2016.

    Article  Google Scholar 

  18. N. Reiskarimian, J. Zhou, and H. Krishnaswamy, “A CMOS passive LPTV nonmagnetic circulator and its application in a full-duplex receiver,” IEEE J. Solid-State Circuits, vol. 52, no. 5, pp. 1358–1372, 2017.

    Article  Google Scholar 

  19. N. Reiskarimian, M. B. Dastjerdi, J. Zhou, and H. Krishnaswamy, “Analysis and design of commutation-based circulator-receivers for integrated full-duplex wireless,” IEEE J. Solid-State Circuits, vol. 53, no. 8, pp. 2190–2201, 2018.

    Article  Google Scholar 

  20. T. Zhang, A. Najafi, C. Su, and J. C. Rudell, “A 1.7-to-2.2GHz full-duplex transceiver system with > 50dB self-interference cancellation over 42MHz bandwidth,” in Proc. IEEE ISSCC’17, 2017.

    Google Scholar 

  21. S. Ramakrishnan, L. Calderin, A. Niknejad, and B. Nikolić, “An FD/FDD transceiver with RX band thermal, quantization, and phase noise rejection and > 64dB TX signal cancellation,” in Proc. IEEE RFIC’17, 2017.

    Google Scholar 

  22. E. Kargaran, S. Tijani, G. Pini, D. Manstretta, and R. Castello, “Low power wideband receiver with RF self-interference cancellation for full-duplex and FDD wireless diversity,” in Proc. IEEE RFIC’17, 2017.

    Google Scholar 

  23. T. Chi, J. S. Park, S. Li, and H. Wang, “A 64GHz full-duplex transceiver front-end with an on-chip multifeed self-interference-canceling antenna and an all-passive canceler supporting 4Gb/s modulation in one antenna footprint,” in Proc. IEEE ISSCC’18, 2018.

    Google Scholar 

  24. K.-D. Chu, M. Katanbaf, T. Zhang, C. Su, and J. C. Rudell, “A broadband and deep-TX self-interference cancellation technique for full-duplex and frequency-domain-duplex transceiver applications,” in Proc. IEEE ISSCC’18, 2018.

    Google Scholar 

  25. J. Zhou, T.-H. Chuang, T. Dinc, and H. Krishnaswamy, “Integrated wideband self-interference cancellation in the RF domain for FDD and full-duplex wireless,” IEEE J. Solid-State Circuits, vol. 50, no. 12, pp. 3015–3031, 2015.

    Article  Google Scholar 

  26. A. El Sayed, A. Ahmed, A. Mishra, A. Shirazi, S. Woo, Y.-S. Choi, S. Mirabbasi, and S. Shekhar, “A full-duplex receiver with 80MHz bandwidth self-interference cancellation circuit using baseband Hilbert transform equalization,” in Proc. IEEE RFIC’17, 2017.

    Google Scholar 

  27. M. Mikhemar, H. Darabi, and A. A. Abidi, “A multiband RF antenna duplexer on CMOS: Design and performance,” IEEE J. Solid-State Circuits, vol. 48, no. 9, pp. 2067–2077, Sept 2013.

    Article  Google Scholar 

  28. B. van Liempd, B. Hershberg, B. Debaillie, P. Wambacq, and J. Craninckx, “An electrical-balance duplexer for in-band full-duplex with < −85dBm in-band distortion at + 10dBm TX-power,” in Proc. IEEE ESSCIRC’15, Sep. 2015, pp. 176–179.

    Google Scholar 

  29. S. H. Abdelhalem, P. S. Gudem, and L. E. Larson, “Tunable CMOS integrated duplexer with antenna impedance tracking and high isolation in the transmit and receive bands,” IEEE Trans. Microw. Theory Tech., vol. 62, no. 9, pp. 2092–2104, Sep. 2014.

    Article  Google Scholar 

  30. M. Elkholy, M. Mikhemar, H. Darabi, and K. Entesari, “Low-loss integrated passive CMOS electrical balance duplexers with single-ended LNA,” IEEE Trans. Microw. Theory Tech., vol. 64, no. 5, pp. 1544–1559, May 2016.

    Article  Google Scholar 

  31. N. Reiskarimian and H. Krishnaswamy, “Magnetic-free non-reciprocity based on staggered commutation,” in Nature Commun., vol. 7, no. 4, 2016.

    Google Scholar 

  32. M. Darvishi, R. van der Zee, E. A. Klumperink, and B. Nauta, “Widely tunable 4th order switched G m-C band-pass filter based on N-path filters,” IEEE J. Solid-State Circuits, vol. 47, no. 12, pp. 3105–3119, Dec 2012.

    Article  Google Scholar 

  33. S. Qin, Q. Xu, and Y. E. Wang, “Nonreciprocal components with distributedly modulated capacitors,” IEEE Trans. Microw. Theory Tech., vol. 62, no. 10, pp. 2260–2272, Oct. 2014.

    Article  Google Scholar 

  34. N. A. Estep, D. L. Sounas, and A. Alù, “Magnetless microwave circulators based on spatiotemporally modulated rings of coupled resonators,” IEEE Trans. Microw. Theory Tech., vol. 64, no. 2, pp. 502–518, Feb. 2016.

    Google Scholar 

  35. S. Jayasuriya, D. Yang, and A. Molnar, “A baseband technique for automated LO leakage suppression achieving <  80dBm in wideband passive mixer-first receivers,” in Proc. IEEE CICC’14, 2014.

    Google Scholar 

  36. J. Zhou, N. Reiskarimian, and H. Krishnaswamy, “Receiver with integrated magnetic-free N-path-filter-based non-reciprocal circulator and baseband self-interference cancellation for full-duplex wireless,” in Proc. IEEE ISSCC’16, 2016.

    Google Scholar 

  37. T. Chen, J. Zhou, N. Grimwood, R. Fogel, J. Marašević, H. Krishnaswamy, and G. Zussman, “Demo: Full-duplex wireless based on a small-form-factor analog self-interference canceller,” in Proc. ACM MobiHoc’16, 2016.

    Google Scholar 

  38. J. Zhou, A. Chakrabarti, P. Kinget, and H. Krishnaswamy, “Low-noise active cancellation of transmitter leakage and transmitter noise in broadband wireless receivers for FDD/co-existence,” IEEE J. Solid-State Circuits, vol. 49, no. 12, pp. 1–17, Dec. 2014.

    Article  Google Scholar 

  39. T. Chen, M. Baraani Dastjerdi, J. Zhou, H. Krishnaswamy, and G. Zussman, “Open-access full-duplex wireless in the ORBIT testbed,” arXiv preprint arXiv:1801.03069, 2018.

    Google Scholar 

  40. “Tutorial: Full-duplex wireless in the ORBIT testbed,” http://www.orbit-lab.org/wiki/Tutorials/k0SDR/Tutorial25, 2017.

  41. T. Chen, J. Zhou, M. Baraani Dastjerdi, J. Diakonikolas, H. Krishnaswamy, and G. Zussman, “Demo abstract: Full-duplex with a compact frequency domain equalization-based RF canceller,” in Proc. IEEE INFOCOM’17, 2017.

    Google Scholar 

  42. T. Chen, M. B. Dastjerdi, J. Zhou, H. Krishnaswamy, and G. Zussman, “Wideband full-duplex wireless via frequency-domain equalization: Design and experimentation,” in Proc. ACM MobiCom’19, 2019.

    Google Scholar 

  43. M. B. Dastjerdi, N. Reiskarimian, T. Chen, G. Zussman, and H. Krishnaswamy, “Full duplex circulator-receiver phased array employing self-interference cancellation via beamforming,” in Proc. IEEE RFIC’18, 2018.

    Google Scholar 

  44. M. B. Dastjerdi, S. Jain, N. Reiskarimian, A. Natarajan, and H. Krishnaswamy, “Full-duplex 2x2 MIMO circulator-receiver with high TX power handling exploiting MIMO RF and shared-delay baseband self-interference cancellation,” in Proc. IEEE ISSCC’19, 2019.

    Google Scholar 

  45. T. Chen, M. B. Dastjerdi, H. Krishnaswamy, and G. Zussman, “Wideband full-duplex phased array with joint transmit and receive beamforming: Optimization and rate gains,” in Proc. ACM MobiHoc’19, 2019.

    Google Scholar 

  46. T. Chen, J. Diakonikolas, J. Ghaderi, and G. Zussman, “Hybrid scheduling in heterogeneous half- and full-duplex wireless networks,” in Proc. IEEE INFOCOM’18, 2018.

    Google Scholar 

  47. ——, “Fairness and delay in heterogeneous half-and full-duplex wireless networks,” in Proc. Asilomar Conference on Signals, Systems and Computers, 2018.

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by NSF grants ECCS-1547406, CNS-1650685, and CNS-1827923, the DARPA RF-FPGA, ACT, and SPAR programs, and two Qualcomm Innovation Fellowships. We thank Mahmood Baraani Dastjerdi, Jelena Diakonikolas, Negar Reiskarimian for their contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingjun Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, T., Zhou, J., Zussman, G., Krishnaswamy, H. (2020). Integrated Full-Duplex Radios: System Concepts, Implementations, and Experimentation. In: Alves, H., Riihonen, T., Suraweera, H. (eds) Full-Duplex Communications for Future Wireless Networks. Springer, Singapore. https://doi.org/10.1007/978-981-15-2969-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2969-6_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2968-9

  • Online ISBN: 978-981-15-2969-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics