Skip to main content

Multi-Objective Optimization for Secure Full-Duplex Wireless Communication Systems

  • Chapter
  • First Online:
Full-Duplex Communications for Future Wireless Networks

Abstract

In traditional half-duplex (HD) communication systems, the HD base station (BS) can transmit artificial noise (AN) to jam the eavesdroppers for securing the downlink (DL) communication. However, guaranteeing uplink (UL) transmission is not possible with an HD BS because HD BSs cannot jam the eavesdroppers during UL transmission. In this chapter, we investigate the resource allocation algorithm design for secure multiuser systems employing a full-duplex (FD) BS for serving multiple HD DL and UL users simultaneously. In particular, the FD BS transmits AN to guarantee the concurrent DL and UL communication security. We propose a multi-objective optimization framework to study two conflicting yet desirable design objectives, namely total DL transmit power minimization and total UL transmit power minimization. To this end, the weighted Tchebycheff method is adopted to formulate the resource allocation algorithm design as a multi-objective optimization problem (MOOP). The considered MOOP takes into account the quality-of-service (QoS) requirements of all legitimate users for guaranteeing secure DL and UL transmission in the presence of potential eavesdroppers. Thereby, secure UL transmission is enabled by the FD BS, which would not be possible with an HD BS. Although the considered MOOP is non-convex, we solve it optimally by semidefinite programming (SDP) relaxation. Simulation results not only unveil the trade-off between the total DL transmit power and the total UL transmit power, but also confirm that the proposed secure FD system can guarantee concurrent secure DL and UL transmission and provide substantial power savings over a baseline system.

ⒸPortions of this chapter are reprinted from [19], with permission from IEEE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We note that transmitting and receiving signals simultaneously via the same antenna is feasible by exploiting a circulator [2].

  2. 2.

    We note that the noise power at the BS is not expected to be the dominating factor for the system performance since BSs are usually equipped with a high quality low-noise amplifier (LNA).

  3. 3.

    Note that the maximization of the secrecy rate is also one possible system design objective. Yet, such a formulation may lead to exceedingly large energy consumption.

References

  1. D. Bharadia and S. Katti, “Full duplex mimo radios,” in Proc. USENIX Conf. on Network System Design. USENIX, 2014, pp. 1–10.

    Google Scholar 

  2. D. Bharadia, E. McMilin, and S. F. d. r. Katti, “Acm sigcomm.” pp. 375–386, 2013.

    Google Scholar 

  3. S. Boyd and L. C. o. Vandenberghe. Cambridge University Press, 2004.

    Google Scholar 

  4. X. Chen, D. W. K. Ng, W. H. Gerstacker, and H. H. Chen, “A survey on multiple-antenna techniques for physical layer security,” IEEE Commun Surveys & Tutorials, vol. 19, pp. 1027–1053, 2017.

    Article  Google Scholar 

  5. B. P. Day, A. R. Margetts, D. W. Bliss, and P. Schniter, “Full-duplex MIMO relaying achievable rates under limited dynamic range.” IEEE J Select Areas Commun., vol. 30, no. 8, pp. 1541–1553, 2012.

    Article  Google Scholar 

  6. M. Duarte, A. Sabharwal, V. Aggarwal, R. Jana, K. K. Ramakrishnan, C. W. Rice, and N. K. Shankaranarayanan, “Design and characterization of a full-duplex multiantenna system for wifi networks.” IEEE Trans Veh. Technol., vol. 63, no. 3, pp. 1160–1177, 2014.

    Article  Google Scholar 

  7. M. Grant, S. Boyd, and Y. C. Ye, Matlab software for disciplined convex programming, 2014. [Online]. Available: http://cvxr.com/cvx

  8. D. Gesbert, M. Kountouris, R. W. Heath, C. B. Chae, and T. Salzer, “From single user to multiuser communications: Shifting the mimo paradigm,” IEEE Signal Process, vol. 24, no. 5, pp. 36–46, 2007.

    Article  Google Scholar 

  9. B. Gärtner and J. Matousek, Approximation algorithms and semidefinite programming. Science & Business Media, Springer, 2012.

    Book  Google Scholar 

  10. Cisco, “Tech. Rep: Global mobile data traffic forecast update” 2016 to 2021 White Paper. Cisco, 2017.

    Google Scholar 

  11. J. I. Choi, M. Jain, K. Srinivasan, P. Levis, and S. Katti, “Achieving single channel full duplex wireless communication,” in Proc. of the Sixteenth Annual Intern Conf. on Mobile Computing and Netw. ACM, 2010, pp. 1–12.

    Google Scholar 

  12. R. T. Marler and J. S. Arora, “Survey of multi-objective optimization methods for engineering,” Structural and Multidisciplinary Optimization, vol. 26, no. 6, pp. 369–395, 2004.

    Article  MathSciNet  Google Scholar 

  13. W. Namgoong, “Modeling and and analysis of nonlinearities and mismatches in ac-coupled direct-conversion receiver,” IEEE Trans Wireless Commun., vol. 4, pp. 163–173, 2005.

    Article  Google Scholar 

  14. D. W. K. Ng, E. S. Lo, and R. Schober, “Robust beamforming for secure communication in systems with wireless information and power transfer,” IEEE Trans Wireless Commun., vol. 13, no. 8, pp. 4599–4615, 2014.

    Article  Google Scholar 

  15. D. W. K. Ng, E. S. Lo, and R. Schober, “Multiobjective resource allocation for secure communication in cognitive radio networks with wireless information and power transfer,” IEEE Trans Veh Technol., vol. 65, no. 5, pp. 3166–3184, 2016.

    Article  Google Scholar 

  16. H. Q. Ngo, H. A. Suraweera, M. Matthaiou, and E. G. Larsson, “Multipair full-duplex relaying with massive arrays and linear processing,” IEEE J Select Areas Commun, vol. 32, no. 9, pp. 1721–1737, 2014.

    Article  Google Scholar 

  17. D. Nguyen, L. N. Tran, P. Pirinen, and M. Latva-aho, “On the spectral efficiency of full-duplex small cell wireless systems,” IEEE Trans Wireless Commun., vol. 13, no. 9, pp. 4896–4910, 2014.

    Article  Google Scholar 

  18. Y. Sun, D. W. K. Ng, and R. Schober, “Multi-objective optimization for power efficient full-duplex wireless communication systems,” in Proc. IEEE Global Commun. Conf. IEEE, 2015, pp. 1–6.

    Google Scholar 

  19. Y. Sun, D. W. K. Ng, J. Zhu, and R. Schober, “Multi-objective optimization for robust power efficient and secure full-duplex wireless communication systems,” IEEE Trans Wireless Commun., vol. 15, no. 8, pp. 5511–5526, 2016.

    Article  Google Scholar 

  20. D. Tse and P. Viswanath, Fundamentals of wireless communication. Cambridge University Press, 2005.

    Book  Google Scholar 

  21. A. D. Wyner, “The wire-tap channel,” Bell system technical journal, vol. 54, no. 8, pp. 1355–1387, 1975.

    Article  MathSciNet  Google Scholar 

  22. Q. Wu, G. Y. Li, W. Chen, D. W. K. Ng, and R. Schober, “An overview of sustainable green 5g networks,” IEEE Wireless Commun., vol. 24, no. 4, pp. 72–80, 2017.

    Article  Google Scholar 

  23. Wong, V. W., Schober, R., Ng, D. W. K., Wang, L. C.: Key technologies for 5G wireless systems. Cambridge University Press (2017)

    Google Scholar 

  24. J. Zhang, L. Dai, S. Sun, and Z. Wang, “On the spectral efficiency of massive MIMO systems with low-resolution adcs,” IEEE Commun. Lett., vol. 20, no. 5, pp. 842–845, 2016.

    Article  Google Scholar 

  25. F. Zhu, F. Gao, M. Yao, and H. Zou, “Joint information-and jamming-beamforming for physical layer security with full duplex base station,” IEEE Trans Signal Process, vol. 62, no. 24, pp. 6391–6401, 2014.

    Article  MathSciNet  Google Scholar 

  26. J. Zhu, D. W. K. Ng, N. Wang, R. Schober, and V. K. A. a. Bhargava, “and design of secure massive mimo systems in the presence of hardware impairments. ieee trans,” Wireless Commun., vol. 16, pp. 2001–2016, 2017.

    Google Scholar 

  27. X. Zhou, Y. Zhang, and L. Song, Physical layer security in wireless communications. CRC Press, 2016.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Sun .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Proof of Proposition 1

We start the proof by rewriting constraints C3 and C4 as follows:

$$\displaystyle \begin{aligned} \begin{array}{rcl} {}{\mbox{C3}}\mbox{: } &\displaystyle &\displaystyle \det({\mathbf{I}}_{N_{\mathrm{R}}} +{\mathbf{X}}^{-1}{\mathbf{L}}^H{\mathbf{W}}_k\mathbf{L}) \le 2^{R_{\mathrm{tol}_{k}}^{\mathrm{DL}}} \notag \\ {}&\displaystyle \overset{(a)}{\Longleftrightarrow}&\displaystyle \det({\mathbf{I}}_{N_{\mathrm{R}}} + {\mathbf{X}}^{-1/2}{\mathbf{L}}^H{\mathbf{W}}_k\mathbf{L}{\mathbf{X}}^{-1/2}) \le 2^{R_{\mathrm{tol}_{k}}^{\mathrm{DL}}}, \end{array} \end{aligned} $$
(10.23)
$$\displaystyle \begin{aligned} \begin{array}{rcl} {} {\mbox{C4}}\mbox{: } &\displaystyle &\displaystyle \det({\mathbf{I}}_{N_{\mathrm{R}}} + P_j{\mathbf{X}}^{-1}{\mathbf{e}}_{j}{\mathbf{e}}_{j}^H) \le 2^{R_{\mathrm{tol}_{j}}^{\mathrm{UL}}} \notag \\ {} &\displaystyle \overset{(b)}{\Longleftrightarrow}&\displaystyle \det({\mathbf{I}}_{N_{\mathrm{R}}} + P_j{\mathbf{X}}^{-1/2}{\mathbf{e}}_{j}{\mathbf{e}}_{j}^H{\mathbf{X}}^{-1/2}) \le 2^{R_{\mathrm{tol}_{j}}^{\mathrm{UL}}}. \end{array} \end{aligned} $$
(10.24)

(a) and (b) hold due to a basic matrix equality, namely \(\det (\mathbf {I}+\mathbf {AB})=\det (\mathbf {I}+\mathbf {BA})\). Then, we study a lower bound of (10.23) and (10.24) by applying the following Lemma.

Lemma 1 (Determinant Inequality [19])

For any semidefinite matrixA ≽0, the inequality holds where equality holds if and only if \( \operatorname {{\mathrm {Rank}}}(\mathbf {A}) \le 1\).

We note that X −1∕2L HW kLX −1∕2 ≽0 holds in (10.23). Thus, applying Lemma 1 to (10.23) yields

(10.25)

As a result, by combining (10.23) and (10.25), we have the following implications:

(10.26)

where λ max(A) denotes the maximum eigenvalue of matrix A and (c) is due to the fact that holds for any A ≽0. Besides, if \( \operatorname {{\mathrm {Rank}}}({\mathbf {W}}_k) \le 1\), we have

$$\displaystyle \begin{aligned} & \operatorname{{\mathrm{Rank}}}({\mathbf{X}}^{-1/2}{\mathbf{L}}^H{\mathbf{W}}_k\mathbf{L}{\mathbf{X}}^{-1/2}) \notag \\ &\quad \le \min\Big\{\operatorname{{\mathrm{Rank}}}({\mathbf{X}}^{-1/2}{\mathbf{L}}^H),\operatorname{{\mathrm{Rank}}}({\mathbf{W}}_k\mathbf{L}{\mathbf{X}}^{-1/2})\Big\} \notag \\ &\quad \le \operatorname{{\mathrm{Rank}}}({\mathbf{W}}_k\mathbf{L}{\mathbf{X}}^{-1/2}) \,\,\, \le 1.\\ {} \notag \end{aligned} $$
(10.27)

Then, equality holds in (10.25). Besides, in (10.26), is equivalent to \(\lambda _{\mathrm {max}}({\mathbf {X}}^{-1/2}{\mathbf {L}}^H{\mathbf {W}}_k\mathbf {L}{\mathbf {X}}^{-1/2}) \le \xi _{k}^{\mathrm {DL}}\). Therefore, (10.23) and (10.26) are equivalent if \( \operatorname {{\mathrm {Rank}}}({\mathbf {W}}_k) \le 1\).

As for constraint C4, we note that \( \operatorname {{\mathrm {Rank}}}(P_j{\mathbf {X}}^{-1/2}{\mathbf {e}}_{j}{\mathbf {e}}_{j}^H{\mathbf {X}}^{-1/2}) \le 1\) always holds. Therefore, by applying Lemma 1 to (10.24), we have

(10.28)

Then, by combining (10.24) and (10.28), we have the following implications:

(10.29)

Appendix 2: Proof of Theorem 1

The SDP relaxed version of equivalent Problem 3 in (10.22) is jointly convex with respect to the optimization variables and satisfies Slater’s constraint qualification. Therefore, strong duality holds and solving the dual problem is equivalent to solving the primal problem [3]. For obtaining the dual problem, we first need the Lagrangian function of the primal problem in (10.22) which is given by

(10.30)

Here, Λ denotes the collection of terms that only involve variables that are independent of W k. λ k, μ j, and π i are the Lagrange multipliers associated with constraints C1, C2, and C9, respectively. Matrix \({\mathbf {D}}_k \in {\mathbb {C}^{N_{\mathrm {R}}\times N_{\mathrm {R}}}} \) is the Lagrange multiplier matrix for constraint \(\widetilde {\text{C3}}\). Matrix \({\mathbf {Y}}_k \in {\mathbb {C}^{N_{\mathrm {T}}\times N_{\mathrm {T}}}} \) is the Lagrange multiplier matrix for the positive semidefinite constraint C7 on matrix W k. For notational simplicity, we define Ψ as the set of scalar Lagrange multipliers for constraints C1, C2, C5, and C9 and Φ as the set of matrix Lagrange multipliers for constraints \(\widetilde {\mbox{C3}}\), \(\widetilde {\mbox{C4}}\), C6, and C7. Thus, the dual problem for the SDP relaxed problem in (10.22) is given by

$$\displaystyle \begin{aligned} & \underset{\Psi \ge 0, \boldsymbol{\Phi} \succeq \mathbf{0}}{\operatorname{\mathrm{maximize}}} \,\,\underset{{\mathbf{W}}_k,{\mathbf{Z}}_{\mathrm{AN}}\in\mathbb{H}^{N_{\mathrm{T}}},P_j,\tau}{\operatorname{\mathrm{minimize}}} \,\, {\mathcal{L}} \Big({\mathbf{W}}_k,{\mathbf{Z}}_{\mathrm{AN}},P_j,\Psi, \boldsymbol{\Phi}\Big)\notag\\ {} \hspace{-3mm} &\mbox{s.t.}\sum_{i=1}^2 \pi_i = 1.\end{aligned} $$
(10.31)

Constraint \(\sum _{i=1}^2 \pi _i = 1\) is imposed to guarantee a bounded solution of the dual problem [3]. Then, we reveal the structure of the optimal W k of (10.22) by studying the Karush–Kuhn–Tucker (KKT) conditions. The KKT conditions for the optimal \({\mathbf {W}}_k^*\) are given by

$$\displaystyle \begin{aligned}{\mathbf{Y}}_k^*,{\mathbf{D}}_k^* \succeq& \mathbf{0},\quad \lambda_k^*, \mu_j^*, \pi_i^* \ge 0, \end{aligned} $$
(10.32)
$$\displaystyle \begin{aligned} {\mathbf{Y}}_k^*{\mathbf{W}}_k^*=&\mathbf{0}, {} \end{aligned} $$
(10.33)
$$\displaystyle \begin{aligned} \nabla_{{\mathbf{W}}_k^*}{\mathcal{L}}=& \mathbf{0}, {}\\ {} \notag \end{aligned} $$
(10.34)

where \({\mathbf {Y}}_k^*\), \({\mathbf {D}}_k^*\), \(\lambda _k^*\), \(\mu _j^*,\) and \(\pi _i^*\) are the optimal Lagrange multipliers for dual problem (10.31). \(\nabla _{{\mathbf {W}}_k^*}{\mathcal {L}}\) denotes the gradient of Lagrangian function \({\mathcal {L}}\) with respect to matrix \({\mathbf {W}}_k^*\). The KKT condition in (10.34) can be expressed as

$$\displaystyle \begin{aligned} &{\mathbf{Y}}_k^*+ \frac{\lambda_k^* {\mathbf{H}}_k}{\Gamma^{\mathrm{DL}}_{\mathrm{req}_k}} \notag \\ &\quad = \varrho_1\pi_1{\mathbf{I}}_{N_{\mathrm{T}}}+ \sum_{j=1}^{J}\mu_j^*\rho{\mathbf{H}}_{\mathrm{SI}}^H\operatorname{{\mathrm{diag}}}({\mathbf{V}}_j){\mathbf{H}}_{\mathrm{SI}} + \mathbf{L}{\mathbf{D}}_k^*{\mathbf{L}}^H.\\ {} \notag \end{aligned} $$
(10.35)

Now, we divide the proof into two cases according to the value of ϱ 1. First, for the case of 0 < ϱ 1 ≤ 1, we define

$$\displaystyle \begin{aligned} {\mathbf{A}}_k^* =&\sum_{j=1}^{J}\mu_j^*\rho{\mathbf{H}}_{\mathrm{SI}}^H\operatorname{{\mathrm{diag}}}({\mathbf{V}}_j){\mathbf{H}}_{\mathrm{SI}} + \mathbf{L}{\mathbf{D}}_k^*{\mathbf{L}}^H, \end{aligned} $$
(10.36)
$$\displaystyle \begin{aligned} \boldsymbol{\Pi}_k^* =& \varrho_1\pi_1{\mathbf{I}}_{N_{\mathrm{T}}}+{\mathbf{A}}_k^*,\\ {} \notag \end{aligned} $$
(10.37)

for notational simplicity. Then, (10.35) implies

$$\displaystyle \begin{aligned} \begin{array}{rcl}{} {\mathbf{Y}}^*=\boldsymbol{\Pi}_k^*-\frac{\lambda_k^* {\mathbf{H}}_k}{\Gamma^{\mathrm{DL}}_{\mathrm{req}_k}}. \end{array} \end{aligned} $$
(10.38)

Pre-multiplying both sides of (10.38) by \({\mathbf {W}}_k^*\), and utilizing (10.33), we have

$$\displaystyle \begin{aligned} \begin{array}{rcl}{} {\mathbf{W}}_k^*\boldsymbol{\Pi}_k^* ={\mathbf{W}}_k^*\frac{\lambda_k^* {\mathbf{H}}_k}{\Gamma^{\mathrm{DL}}_{\mathrm{req}_k}}. \end{array} \end{aligned} $$
(10.39)

By applying basic inequalities for the rank of matrices, the following relation holds:

$$\displaystyle \begin{aligned} \hspace{-4mm} \operatorname{{\mathrm{Rank}}}({\mathbf{W}}_k^*) \overset{(a)}{=}& \operatorname{{\mathrm{Rank}}}({\mathbf{W}}_k^*\boldsymbol{\Pi}_k^*) = \operatorname{{\mathrm{Rank}}}\Big({\mathbf{W}}_k^*\frac{\lambda_k^* {\mathbf{H}}_k}{\Gamma^{\mathrm{DL}}_{\mathrm{req}_k}}\Big)\notag\\ \hspace{-4mm} \overset{(b)}{\le}& \min\Big\{\operatorname{{\mathrm{Rank}}}({\mathbf{W}}_k^*), \operatorname{{\mathrm{Rank}}}\Big(\frac{\lambda_k^* {\mathbf{H}}_k}{\Gamma^{\mathrm{DL}}_{\mathrm{req}_k}}\Big)\Big\} \notag \\ \hspace{-4mm} \overset{(c)}{\le}& \operatorname{{\mathrm{Rank}}}\Big(\frac{\lambda_k^* {\mathbf{H}}_k}{\Gamma^{\mathrm{DL}}_{\mathrm{req}_k}}\Big) \le 1,\\ {} \notag \end{aligned} $$
(10.40)

where (a) is valid because \(\boldsymbol {\Pi }_k^* \succ \mathbf {0}\), (b) is due to the basic result \( \operatorname {{\mathrm {Rank}}}(\mathbf {A}\mathbf {B}) \le \min \big \{ \operatorname {{\mathrm {Rank}}}(\mathbf {A}), \operatorname {{\mathrm {Rank}}}(\mathbf {B})\big \}\), and (c) is due to the fact that \(\min \{a,b\} \le a\). We note that \({\mathbf {W}}_k^* \neq \mathbf {0}\) for \(\Gamma ^{\mathrm {DL}}_{\mathrm {req}_k} > 0\). Thus, \( \operatorname {{\mathrm {Rank}}}({\mathbf {W}}_k^*)=1\).

Then, for the case of ϱ 1 = 0, we show that we can always construct a rank-one optimal solution \({\mathbf {W}}_k^{**}\). We note that the problem in (10.22) with ϱ 1 = 0 is equivalent to a total UL transmit power minimization problem which is given by

$$\displaystyle \begin{aligned}&\hspace{0mm}\underset{{\mathbf{W}}_k,{\mathbf{Z}}_{\mathrm{AN}}\in\mathbb{H}^{N_{\mathrm{T}}},P_j} {\operatorname{\mathrm{minimize}}}\,\, \sum_{j=1}^{J}P_j \notag\\ & \hspace{-10mm} \mbox{s.t.} \hspace{5mm} \mbox{C1},\mbox{C2},\widetilde{\mbox{C3}},\widetilde{\mbox{C4}},\mbox{C5},\mbox{C6},\mbox{C7},{\mbox{C9}}.\end{aligned} $$
(10.41)

We first solve the above convex optimization problem and obtain the UL transmit power \(P_j^{**}\), the DL beamforming matrix \({\mathbf {W}}_k^*\), and the AN covariance matrix \({\mathbf {Z}}_{\mathrm {AN}}^*\). If \( \operatorname {{\mathrm {Rank}}}({\mathbf {W}}_k^*)=1,\forall k\), then the globally optimal solution of problem (10.19) for ϱ 1 = 0 is achieved. Otherwise, we substitute \(P_j^{**}\) and \({\mathbf {Z}}_{\mathrm {AN}}^*\) into the following auxiliary problem:

(10.42)

Since the problem in (10.42) shares the feasible set of problem (10.41), problem (10.42) is also feasible. Now, we claim that for a given \(P_j^{**}\) and \({\mathbf {Z}}_{\mathrm {AN}}^*\) in (10.42), the solution \({\mathbf {W}}_k^{**}\) of (10.42) is a rank-one matrix. First, the gradient of the Lagrangian function for (10.42) with respect to \({\mathbf {W}}_k^{**}\) can be expressed as

$$\displaystyle \begin{aligned} \begin{array}{rcl}{} {\mathbf{Y}}^{**}=\boldsymbol{\Pi}_k^{**}-\frac{\lambda_k^{**} {\mathbf{H}}_k}{\Gamma^{\mathrm{DL}}_{\mathrm{req}_k}}, \end{array} \end{aligned} $$
(10.43)

where

$$\displaystyle \begin{aligned} \boldsymbol{\Pi}_k^{**}=&{\mathbf{I}}_{N_{\mathrm{T}}}+{\mathbf{A}}_k^{**} \,\,\,\,\text{ and} \end{aligned} $$
(10.44)
$$\displaystyle \begin{aligned} {\mathbf{A}}_k^{**}=& \sum_{j=1}^{J}\mu_j^{**}\rho{\mathbf{H}}_{\mathrm{SI}}^H\operatorname{{\mathrm{diag}}}({\mathbf{V}}_j){\mathbf{H}}_{\mathrm{SI}} + \mathbf{L}{\mathbf{D}}_k^{**}{\mathbf{L}}^H.\\ {} \notag \end{aligned} $$
(10.45)

\({\mathbf {Y}}_k^{**}\), \({\mathbf {D}}_k^{**}\), \(\lambda _k^{**}\), and \(\mu _j^{**}\) are the optimal Lagrange multipliers for the dual problem of (10.42). Pre-multiplying both sides of (10.43) by the optimal solution \({\mathbf {W}}_k^{**}\), we have

$$\displaystyle \begin{aligned} \begin{array}{rcl}{} {\mathbf{W}}_k^{**}\boldsymbol{\Pi}_k^{**} ={\mathbf{W}}_k^{**}\frac{\lambda_k^{**} {\mathbf{H}}_k}{\Gamma^{\mathrm{DL}}_{\mathrm{req}_k}}. \end{array} \end{aligned} $$
(10.46)

We note that \(\boldsymbol {\Pi }_k^{**}\) is a full-rank matrix, i.e., \(\boldsymbol {\Pi }_k^{**} \succ \mathbf {0}\), and (10.46) has the same form as (10.39). Thus, we can follow the same approach as for the case of 0 < ϱ i ≤ 1 for showing that \({\mathbf {W}}_k^{**}\) is a rank-one matrix. Also, since \({\mathbf {W}}_k^{**}\) is a feasible solution of (10.41) for \(P_j^{**}\), an optimal rank-one matrix \({\mathbf {W}}_k^{**}\) for the case of ϱ 1 = 0 is constructed.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sun, Y., Ng, D.W.K., Schober, R. (2020). Multi-Objective Optimization for Secure Full-Duplex Wireless Communication Systems. In: Alves, H., Riihonen, T., Suraweera, H. (eds) Full-Duplex Communications for Future Wireless Networks. Springer, Singapore. https://doi.org/10.1007/978-981-15-2969-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2969-6_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2968-9

  • Online ISBN: 978-981-15-2969-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics