Skip to main content

Antennas and Radio Frequency Self-Interference Cancellation

  • Chapter
  • First Online:
Full-Duplex Communications for Future Wireless Networks

Abstract

This chapter presents and reviews radio frequency (RF) transceiver architectures for in-band full-duplex, spanning both antenna techniques and RF cancellation loops. In the antenna domain, isolation can be achieved using separate transmit and receive antennas, exploiting propagation loss for transmit-to-receive isolation, or through more complicated multi-antenna arrangements which exploit propagation domain cancellation. Single antenna duplexing architectures are also discussed, covering circulators and electrical balance duplexers. Passive and active feedforward cancellation techniques are reviewed, discussing the advantages and disadvantages of various cancellation architectures in terms of their complexity, and their performance in cancelling noise and multipath self-interference. The chapter concludes with a discussion on combining antenna and radio frequency cancellation techniques in full-duplex transceiver front-end architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is distinct from the active cancellation techniques discussed below in Sect. 1.6, which tap the Tx signal in the digital baseband domain instead.

  2. 2.

    Also known as a “hybrid transformer,” “hybrid coil,” “bridge transformer,” “magic tee,” or simply a “hybrid.”

References

  1. A. Sabharwal, P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan, and R. Wichman, “In-Band Full-Duplex Wireless: Challenges and Opportunities,” IEEE Journal on Selected Areas in Communications, vol. 32, no. 9, pp. 1637–1652, Sep 2014.

    Article  Google Scholar 

  2. M. Duarte and A. Sabharwal, “Full-duplex wireless communications using off-the-shelf radios: Feasibility and first results,” in Signals, Systems and Computers (ASILOMAR), 2010 Conference Record of the Forty Fourth Asilomar Conference on, 2010, pp. 1558–1562.

    Google Scholar 

  3. A. Sahai, G. Patel, and A. Sabharwal, “Pushing the limits of full duplex wireless: design and real-time implementation,” Rice Univ. Houston, TX, Tech. Rep. TREE1104, 2011.

    Google Scholar 

  4. S. Chen, “Division-free Duplex for Wireless Applications,” Ph.D. dissertation, University of Bristol, UK, 1997.

    Google Scholar 

  5. C. Anderson, S. Krishnamoorthy, C. Ranson, T. Lemon, W. Newhall, T. Kummetz, and J. Reed, “Antenna Isolation, Wideband Multipath Propagation Measurements, and Interference Mitigation for On-frequency Repeaters,” in IEEE SoutheastCon, 2004. Proceedings. IEEE, 2004, pp. 110–114.

    Google Scholar 

  6. E. Everett, M. Duarte, C. Dick, and A. Sabharwal, “Empowering full-duplex wireless communication by exploiting directional diversity,” in 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), 2011, pp. 2002–2006.

    Google Scholar 

  7. E. Everett, A. Sahai, and A. Sabharwal, “Passive Self-Interference Suppression for Full-Duplex Infrastructure Nodes,” IEEE Transactions on Wireless Communications, vol. 13, no. 2, pp. 680–694, 2014.

    Article  Google Scholar 

  8. M. Heino, D. Korpi, T. Huusari, E. Antonio-Rodriguez, S. Venkatasubramanian, T. Riihonen, L. Anttila, C. Icheln, K. Haneda, R. Wichman, and M. Valkama, “Recent advances in antenna design and interference cancellation algorithms for in-band full duplex relays,” IEEE Communications Magazine, vol. 53, no. 5, pp. 91–101, May 2015.

    Article  Google Scholar 

  9. N. Phungamngern, P. Uthansakul, and M. Uthansakul, “Digital and RF interference cancellation for single-channel full-duplex transceiver using a single antenna,” in 2013 10th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 2013, pp. 1–5.

    Google Scholar 

  10. D. Bharadia, E. McMilin, and S. Katti, “Full Duplex Radios,” in Proc. 2013 ACM SIGCOMM, Hong Kong, 2013.

    Google Scholar 

  11. N. A. Estep, D. L. Sounas, J. Soric, and A. Alù, “Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops,” Nature Physics, vol. 10, no. 12, pp. 923–927, Nov 2014.

    Article  Google Scholar 

  12. J. I. Choi, M. Jain, K. Shrinivasan, P. Levis, and S. Katti, “Achieving Single Channel, Full Duplex Wireless Communication,” in Proc. ACM Int. conf. Mobile Comput. & Netw., Chicago, IL, 2010, pp. 1–12.

    Google Scholar 

  13. E. Aryafar, M. A. Khojastepour, and S. Rangarajan, “MIDU: Enabling MIMO Full Duplex,” in Proc. ACM Int. conf. Mobile Comput. & Netw., 2012, pp. 257–268.

    Google Scholar 

  14. C. Jung Il, S. Hong, M. Jain, S. Katti, P. Levis, and J. Mehlman, “Beyond full duplex wireless,” in 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), 2012, pp. 40–44.

    Google Scholar 

  15. G. Pedersen, E. de Carvalho, O. Franek, E. Foroozanfard, E. Tsakalaki, and A. Tatomirescu, “Full-duplex MIMO system based on antenna cancellation technique,” Electronics Letters, vol. 50, no. 16, pp. 1116–1117, Jul 2014.

    Article  Google Scholar 

  16. M. Jain, J. I. Choi, T. M. Kim, D. Bharadia, S. Seth, K. Shrinivasan, P. Levis, S. Katti, and P. Sinha, “Practical Real-Time Full Duplex Wireless,” in Proc. ACM Int. conf. Mobile Comput. & Netw., Las Vegas, NV., 2011, pp. 301–312.

    Google Scholar 

  17. T. Riihonen, S. Werner, and R. Wichman, “Mitigation of Loopback Self-Interference in Full-Duplex MIMO Relays,” IEEE Transactions on Signal Processing, vol. 59, no. 12, pp. 5983–5993, Dec 2011.

    Article  MathSciNet  Google Scholar 

  18. E. Everett, C. Shepard, L. Zhong, and A. Sabharwal, “Softnull: Many-antenna full-duplex wireless via digital beamforming,” IEEE Transactions on Wireless Communications, vol. 15, no. 12, pp. 8077–8092, Dec 2016.

    Article  Google Scholar 

  19. S. Chen, M. A. Beach, and J. P. McGeehan, “Division-free duplex for wireless applications,” Electronics Letters, vol. 34, no. 2, pp. 147–148, 1998.

    Article  Google Scholar 

  20. S. Kannangara and M. Faulkner, “Adaptive duplexer for multiband transreceiver,” in 2003. RAWCON ’03. Proceedings Radio and Wireless Conference, 2003, pp. 381–384.

    Google Scholar 

  21. ——, “Analysis of an Adaptive Wideband Duplexer With Double-Loop Cancellation,” IEEE Transactions on Vehicular Technology, vol. 56, no. 4, pp. 1971–1982, 2007.

    Google Scholar 

  22. D. Korpi, S. Venkatasubramanian, T. Riihonen, L. Anttila, S. Otewa, C. Icheln, K. Haneda, S. Tretyakov, M. Valkama, and R. Wichman, “Advanced self-interference cancellation and multiantenna techniques for full-duplex radios,” in 2013 Asilomar Conference on Signals, Systems and Computers, Nov 2013, pp. 3–8.

    Google Scholar 

  23. D. Korpi, L. Anttila, V. Syrjala, and M. Valkama, “Widely Linear Digital Self-Interference Cancellation in Direct-Conversion Full-Duplex Transceiver,” IEEE Journal on Selected Areas in Communications, vol. 32, no. 9, pp. 1674–1687, sep 2014.

    Google Scholar 

  24. D.-J. van den Broek, E. A. M. Klumperink, and B. Nauta, “An In-Band Full-Duplex Radio Receiver With a Passive Vector Modulator Downmixer for Self-Interference Cancellation,” IEEE Journal of Solid-State Circuits, vol. 50, no. 12, pp. 3003–3014, Dec 2015.

    Article  Google Scholar 

  25. T. Huusari, Y.-S. Choi, P. Liikkanen, D. Korpi, S. Talwar, and M. Valkama, “Wideband Self-Adaptive RF Cancellation Circuit for Full-Duplex Radio: Operating Principle and Measurements,” in 2015 IEEE 81st Vehicular Technology Conference (VTC Spring). IEEE, may 2015, pp. 1–7.

    Google Scholar 

  26. J. Zhou, A. Chakrabarti, P. R. Kinget, and H. Krishnaswamy, “Low-Noise Active Cancellation of Transmitter Leakage and Transmitter Noise in Broadband Wireless Receivers for FDD/Co-Existence,” IEEE Journal of Solid-State Circuits, vol. 49, no. 12, pp. 3046–3062, Dec 2014.

    Article  Google Scholar 

  27. D. Korpi, J. Tamminen, M. Turunen, T. Huusari, Y.-S. Choi, L. Anttila, S. Talwar, and M. Valkama, “Full-duplex mobile device: pushing the limits,” IEEE Communications Magazine, vol. 54, no. 9, pp. 80–87, sep 2016.

    Google Scholar 

  28. H. J. Carlin and A. B. Giordano, Network theory: an introduction to reciprocal and non-reciprocal circuits. Prentice-Hall, 1964.

    Google Scholar 

  29. G. A. Campbell and R. M. Foster, “Maximum Output Networks for Telephone Substation and Repeater Circuits,” American Institute of Electrical Engineers, Transactions of the, vol. XXXIX, no. 1, pp. 231–290, 1920.

    Google Scholar 

  30. M. Mikhemar, H. Darabi, and A. A. Abidi, “A Multiband RF Antenna Duplexer on CMOS: Design and Performance,” IEEE Journal of Solid-State Circuits, vol. 48, no. 9, pp. 2067–2077, 2013.

    Article  Google Scholar 

  31. S. H. Abdelhalem, P. S. Gudem, and L. E. Larson, “Hybrid Transformer-Based Tunable Differential Duplexer in a 90-nm CMOS Process,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 3, pp. 1316–1326, 2013.

    Article  Google Scholar 

  32. ——, “Tunable CMOS Integrated Duplexer With Antenna Impedance Tracking and High Isolation in the Transmit and Receive Bands,” IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 9, pp. 2092–2104, sep 2014.

    Google Scholar 

  33. L. Laughlin, M. A. Beach, K. A. Morris, and J. L. Haine, “Optimum Single Antenna Full Duplex Using Hybrid Junctions,” IEEE Journal on Selected Areas in Communications, vol. 32, no. 9, pp. 1653–1661, sep 2014.

    Google Scholar 

  34. B. van Liempd, J. Craninckx, R. Singh, P. Reynaert, S. Malotaux, and J. R. Long, “A Dual-Notch +27dBm Tx-Power Electrical-Balance Duplexer,” in ESSCIRC 2014 - 40th European Solid State Circuits Conference (ESSCIRC). IEEE, sep 2014, pp. 463–466.

    Google Scholar 

  35. B. van Liempd, B. Hershberg, S. Ariumi, K. Raczkowski, K.-F. Bink, U. Karthaus, E. Martens, P. Wambacq, and J. Craninckx, “A +70-dBm IIP3 Electrical-Balance Duplexer for Highly Integrated Tunable Front-Ends,” IEEE Transactions on Microwave Theory and Techniques, pp. 1–13, 2016.

    Google Scholar 

  36. L. Laughlin, C. Zhang, M. A. Beach, K. A. Morris, J. L. Haine, and M. K. Khan, “A 700–950 MHz Tunable Frequency Division Duplex Transceiver Combining Passive and Active Self-interference Cancellation,” in 2018 IEEE MTT-S International Microwave Symposium (IMS), Philadelphia, PA. USA., 2018, pp. 1–4.

    Google Scholar 

  37. L. Laughlin, C. Zhang, M. A. Beach, K. A. Morris, J. L. Haine, M. K. Khan, and M. McCullagh, “Tunable Frequency-Division Duplex RF Front End Using Electrical Balance and Active Cancellation,” IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 12, pp. 5812–5824, Dec 2018.

    Article  Google Scholar 

  38. Various photographers for Cassel & co., “image from The Queen’s Empire. Volume 3. Cassell & Co. London. Public domain.”

    Google Scholar 

  39. R. Ludwig and G. Bogdanov, RF Circuit Design, 2nd ed. New Jersey: Pearson Education Inc., 2009.

    Google Scholar 

  40. L. Laughlin, C. Zhang, M. A. Beach, K. A. Morris, and J. Haine, “A Widely Tunable Full Duplex Transceiver Combining Electrical Balance Isolation and Active Analog Cancellation,” in 2015 IEEE 81st Vehicular Technology Conference (VTC Spring). IEEE, may 2015, pp. 1–5.

    Google Scholar 

  41. C. Zhang, L. Laughlin, M. Beach, K. Morris, and J. Haine, “Micro-Electromechanical Impedance Control for Electrical Balance Duplexing,” in European Wireless Conference, 2016.

    Google Scholar 

  42. E. Manuzzato, J. Tamminen, M. Turunen, D. Korpi, F. Granelli, and M. Valkama, “Digitally-Controlled Electrical Balance Duplexer for Transmitter-Receiver Isolation in Full-Duplex Radio,” in European Wireless Conference, 2016.

    Google Scholar 

  43. L. Laughlin, C. Zhang, M. A. Beach, K. A. Morris, and J. L. Haine, “Passive and Active Electrical Balance Duplexers,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 63, no. 1, pp. 94–98, Jan 2016.

    Article  Google Scholar 

  44. G. Castellano, D. Montanari, D. De Caro, D. Manstretta, and A. G. M. Strollo, “An Efficient Digital Background Control for Hybrid Transformer-Based Receivers,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 12, pp. 3068–3080, Dec 2017.

    Article  MathSciNet  Google Scholar 

  45. L. Laughlin, C. Zhang, M. A. Beach, K. A. Morris, and J. L. Haine, “Dynamic Performance of Electrical Balance Duplexing in a Vehicular Scenario,” IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 844–847, 2017.

    Article  Google Scholar 

  46. L. Laughlin, C. Zhang, M. Beach, K. Morris, and J. Haine, “Electrical Balance Duplexer Field Trials in High-Speed Rail Scenarios,” IEEE Transactions on Antennas and Propagation, vol. 65, no. 11, 2017.

    Google Scholar 

  47. L. Laughlin, M. A. Beach, K. A. Morris, and J. L. Haine, “Electrical balance duplexing for small form factor realization of in-band full duplex,” IEEE Communications Magazine, vol. 53, no. 5, pp. 102–110, may 2015.

    Google Scholar 

  48. W. Schacherbauer, T. Ostertag, C. C. W. Ruppel, A. Springer, and R. Weigel, “An Interference Cancellation Technique for the Use in Multiband Software Radio Frontend Design,” in 30th European Microwave Conference, 2000, pp. 1–4.

    Google Scholar 

  49. A. Sahai, G. Patel, C. Dick, and A. Sabharwal, “Understanding the impact of phase noise on active cancellation in wireless full-duplex,” in 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), 2012, pp. 29–33.

    Google Scholar 

  50. ——, “On the Impact of Phase Noise on Active Cancelation in Wireless Full-Duplex,” IEEE Transactions on Vehicular Technology, vol. 62, no. 9, pp. 4494–4510, Nov 2013.

    Google Scholar 

  51. M. Duarte, C. Dick, and A. Sabharwal, “Experiment-Driven Characterization of Full-Duplex Wireless Systems,” IEEE Transactions on Wireless Communications, vol. 11, no. 12, pp. 4296–4307, Dec 2012.

    Article  Google Scholar 

  52. A. Balatsoukas-Stimming, P. Belanovic, K. Alexandris, and A. Burg, “On self-interference suppression methods for low-complexity full-duplex MIMO,” in 2013 Asilomar Conference on Signals, Systems and Computers. IEEE, Nov 2013, pp. 992–997.

    Google Scholar 

  53. Z. Zhan, G. Villemaud, and J.-M. Gorce, “Analysis and reduction of the impact of thermal noise on the Full-Duplex OFDM radio,” in 2014 IEEE Radio and Wireless Symposium (RWS). IEEE, Jan 2014, pp. 220–222.

    Google Scholar 

  54. M. McKinley, K. Remley, M. Myslinsky, J. Kenney, D. Schreurs, and B. Nauwelaers, “EVM Calculation for Broadband Modulated Signals,” in Proc. 64th ARFTG Conf. Dig., Orlando, FL. USA, 2004, pp. 45–52.

    Google Scholar 

  55. Geoff Carey (Mimotech), “Air Division Duplexing doubles Transmission Capacity for Microwave Backhaul,” in Cambridge Wireless Radio Technology Special Interest Group, Bristol, 2015.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo Laughlin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Laughlin, L., Beach, M.A. (2020). Antennas and Radio Frequency Self-Interference Cancellation. In: Alves, H., Riihonen, T., Suraweera, H. (eds) Full-Duplex Communications for Future Wireless Networks. Springer, Singapore. https://doi.org/10.1007/978-981-15-2969-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2969-6_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2968-9

  • Online ISBN: 978-981-15-2969-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics