Skip to main content

Temperature-Dependent Transformation Thermotics for Thermal Conduction: Switchable Cloak and Macroscopic Diode

  • Chapter
  • First Online:
Theoretical Thermotics
  • 671 Accesses

Abstract

By establishing temperature-dependent transformation thermotics for treating materials whose conductivity depends on temperature, we show analytical and simulation evidences for switchable thermal cloaking and a macroscopic thermal diode based on the cloaking. The latter allows heat flow in one direction but prohibits the flow in the opposite direction, which is also confirmed by our experiments. Our results suggest that the temperature-dependent transformation thermotics could be useful for achieving macroscopic heat rectification, and provide guidance both for macroscopic control of heat flow and for the design of the counterparts of switchable thermal cloaks or macroscopic thermal diodes in other fields like seismology, acoustics, electromagnetics, or matter waves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 64.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fan, C.Z., Gao, Y., Huang, J.P.: Shaped graded materials with an apparent negative thermal conductivity. Appl. Phys. Lett. 92, 251907 (2008)

    Article  ADS  Google Scholar 

  2. Li, J.Y., Gao, Y., Huang, J.P.: A bifunctional cloak using transformation media. J. Appl. Phys. 108, 074504 (2010)

    Article  ADS  Google Scholar 

  3. Guenneau, S., Amra, C., Veynante, D.: Transformation thermodynamics: cloaking and concentrating heat flux. Opt. Express 20, 8207–8218 (2012)

    Article  ADS  Google Scholar 

  4. Narayana, S., Sato, Y.: Heat flux manipulation with engineered thermal materials. Phys. Rev. Lett. 108, 214303 (2012)

    Article  ADS  Google Scholar 

  5. Schittny, R., Kadic, M., Guenneau, S., Wegener, M.: Experiments on transformation thermodynamics: molding the flow of heat. Phys. Rev. Lett. 110, 195901 (2013)

    Article  ADS  Google Scholar 

  6. Xu, H.Y., Shi, X.H., Gao, F., Sun, H.D., Zhang, B.L.: Ultrathin three-dimensional thermal cloak. Phys. Rev. Lett. 112, 054301 (2014)

    Article  ADS  Google Scholar 

  7. Han, T.C., Bai, X., Gao, D.L., Thong, J.T.L., Li, B.W., Qiu, C.-W.: Experimental demonstration of a bilayer thermal cloak. Phys. Rev. Lett. 112, 054302 (2014)

    Article  ADS  Google Scholar 

  8. Ma, Y.G., Liu, Y.C., Raza, M., Wang, Y.D., He, S.L.: Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously. Phys. Rev. Lett. 113, 205501 (2014)

    Article  ADS  Google Scholar 

  9. Leonhardt, U.: Optical conformal mapping. Science 312, 1777–1780 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  10. Pendry, J.B., Schurig, D., Smith, D.R.: Controlling electromagnetic fields. Science 312, 1780–1782 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  11. Chen, H., Chan, C.T., Sheng, P.: Transformation optics and metamaterials. Nat. Mater. 9, 387–396 (2010)

    Article  ADS  Google Scholar 

  12. Landy, N., Smith, D.R.: A full-parameter unidirectional metamaterial cloak for microwaves. Nat. Mater. 12, 25–28 (2013)

    Article  ADS  Google Scholar 

  13. Kadic, M., Bückmann, T., Schittny, R., Wegener, M.: Metamaterials beyond electromagnetism. Rep. Prog. Phys. 76, 126501 (2013)

    Article  ADS  Google Scholar 

  14. Zeller, R.C., Pohl, R.O.: Thermal conductivity and specific heat of noncrystalline solids. Phys. Rev. B 4, 2029–2041 (1971)

    Article  ADS  Google Scholar 

  15. Glassbrenner, C.J., Slack, G.A.: Thermal conductivity of silicon and germanium from 3 K to the melting point. Phys. Rev. 134, A1058–A1069 (1964)

    Article  ADS  Google Scholar 

  16. Han, T.C., Yuan, T., Li, B.W., Qiu, C.-W.: Homogeneous thermal cloak with constant conductivity and tunable heat localization. Sci. Rep. 3, 1593 (2013)

    Article  ADS  Google Scholar 

  17. Chen, P.Y., Alù, A.: Atomically thin surface cloak using graphene monolayers. ACS Nano 5, 5855–5863 (2011)

    Article  Google Scholar 

  18. Zhang, W., Zhu, W.M., Cai, H., Tsai, M.-L.J., Lo, G.Q., Tsai, D.P., Tanoto, H., Teng, J.H., Zhang, X.H., Kwong, D.L., Liu, A.Q.: Resonance switchable metamaterials using MEMS fabrications. IEEE J. Sel. Top. Quant. 19, 4700306 (2013)

    Article  Google Scholar 

  19. Wang, R.F., Mei, Z.L., Yang, X.Y., Ma, X., Cui, T.J.: Switchable invisibility cloak, anticloak, transparent cloak, superscatterer, and illusion for the laplace equation. Phys. Rev. B 89, 165108 (2014)

    Article  ADS  Google Scholar 

  20. Huang, J.P., Yu, K.W.: Enhanced nonlinear optical responses of materials: composite effects. Phys. Rep. 431, 87–172 (2006)

    Article  ADS  Google Scholar 

  21. Oh, D.-W., Ko, C., Ramanathan, S., Cahill, D.G.: Thermal conductivity and dynamic heat capacity across the metal-insulator transition in thin film VO\(_{2}\). Appl. Phys. Lett. 96, 151906 (2010)

    Article  ADS  Google Scholar 

  22. Zheng, R.T., Gao, J.W., Wang, J.J., Chen, G.: Reversible temperature regulation of electrical and thermal conductivity using liquid-solid phase transitions. Nat. Commun. 2, 289 (2011)

    Article  ADS  Google Scholar 

  23. Siegert, K.S., Lange, F.R.L., Sittner, E.R., Volker, H., Schlockermann, C., Siegrist, T., Wuttig, M.: Impact of vacancy ordering on thermal transport in crystalline phase-change materials. Rep. Prog. Phys. 78, 013001 (2015)

    Article  ADS  Google Scholar 

  24. Omori, T., Kainuma, R.: Materials science: alloys with long memories. Nature 502, 42–44 (2013)

    Article  ADS  Google Scholar 

  25. Li, Y., Shen, X.Y., Wu, Z.H., Huang, J.Y., Chen, Y.X., Ni, Y.S., Huang, J.P.: Temperature-dependent transformation thermotics: from switchable thermal cloaks to macroscopic thermal diodes. Phys. Rev. Lett. 115, 195503 (2015)

    Article  ADS  Google Scholar 

  26. Han, T.C., Bai, X., Thong, J.T.L., Li, B.W., Qiu, C.-W.: Full control and manipulation of heat signatures: cloaking, camouflage and thermal metamaterials. Adv. Mat. 26, 1731–1734 (2014)

    Article  Google Scholar 

  27. Zhu, N.Q., Shen, X.Y., Huang, J.P.: Converting the patterns of local heat flux via thermal illusion device. AIP Adv. 5, 053401 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Ping Huang .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, JP. (2020). Temperature-Dependent Transformation Thermotics for Thermal Conduction: Switchable Cloak and Macroscopic Diode. In: Theoretical Thermotics. Springer, Singapore. https://doi.org/10.1007/978-981-15-2301-4_9

Download citation

Publish with us

Policies and ethics