Skip to main content

Heat Conduction Equation

  • Chapter
  • First Online:
Theoretical Thermotics
  • 669 Accesses

Abstract

Manipulating thermal conductivities are fundamentally important for controlling the conduction of heat at will. Thermal cloaks and concentrators, which have been extensively studied recently, are actually graded materials designed according to coordinate transformation approaches, and their effective thermal conductivity can be seen to equal that of the host medium outside the cloak or concentrator. Here we attempt to investigate a more general problem: what is the effective thermal conductivity of graded materials? In particular, we perform a first-principles approach to the analytic exact results of effective thermal conductivities of materials possessing either power-law or linear gradation profiles. On the other hand, by solving Laplace’s equation, we derive a differential equation for calculating the effective thermal conductivity of a material whose thermal conductivity varies along the radius with arbitrary gradation profiles. The two methods agree well with each other for both external and internal heat sources, as confirmed by simulations and experiments. This chapter provides different methods for designing new thermal metamaterials (including thermal cloaks and concentrators), in order to control or manipulate the transfer of heat

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 64.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fan, C.Z., Gao, Y., Huang, J.P.: Shaped graded materials with an apparent negative thermal conductivity. Appl. Phys. Lett. 92, 251907 (2008)

    Article  ADS  Google Scholar 

  2. Chen, T.Y., Weng, C.N., Chen, J.S.: Cloak for curvilinearly anisotropic media in conduction. Appl. Phys. Lett. 93, 114103 (2008)

    Article  ADS  Google Scholar 

  3. Li, J.Y., Gao, Y., Huang, J.P.: A bifunctional cloak using transformation media. J. Appl. Phys. 108, 074504 (2010)

    Article  ADS  Google Scholar 

  4. Guenneau, S., Amra, C., Veynante, D.: Transformation thermodynamics: cloaking and concentrating heat flux. Opt. Express 20, 8207–8218 (2012)

    Article  ADS  Google Scholar 

  5. Narayana, S., Sato, Y.: Heat flux manipulation with engineered thermal materials. Phys. Rev. Lett. 108, 214303 (2012)

    Article  ADS  Google Scholar 

  6. He, X., Wu, L.Z.: Thermal transparency with the concept of neutral inclusion. Phys. Rev. E 88, 033201 (2013)

    Article  ADS  Google Scholar 

  7. Schittny, R., Kadic, M., Guenneau, S., Wegener, M.: Experiments on transformation thermodynamics: molding the flow of heat. Phys. Rev. Lett. 110, 195901 (2013)

    Article  ADS  Google Scholar 

  8. Han, T.C., Zhao, J.J., Yuan, T., Lei, D.Y., Li, B.W., Qiu, C.W.: Theoretical realization of an ultra-efficient thermalenergy harvesting cell made of natural materials. Energ. Environ. Sci. 6, 3537–3541 (2013)

    Article  Google Scholar 

  9. Han, T.C., Bai, X., Gao, D.L., Thong, J.T.L., Li, B.W., Qiu, C.-W.: Experimental demonstration of a bilayer thermal cloak. Phys. Rev. Lett. 112, 054302 (2014)

    Article  ADS  Google Scholar 

  10. Li, Y., Shen, X.Y., Wu, Z.H., Huang, J.Y., Chen, Y.X., Ni, Y.S., Huang, J.P.: Temperature-dependent transformation thermotics: from switchable thermal cloaks to macroscopic thermal diodes. Phys. Rev. Lett. 115, 195503 (2015)

    Article  ADS  Google Scholar 

  11. Shen, X.Y., Li, Y., Jiang, C.R., Huang, J.P.: Temperature trapping: energy-free maintenance of constant temperatures as ambient temperature gradients change. Phys. Rev. Lett. 117, 055501 (2016)

    Article  ADS  Google Scholar 

  12. Shen, X.Y., Chen, Y.X., Huang, J.P.: Thermal magnifier and minifier. Commun. Theor. Phys. 65, 375–380 (2016)

    Article  ADS  Google Scholar 

  13. Xiang, Y.J., Wen, S.C., Dai, X.Y., Fan, D.Y.: Modulation instability in nonlinear oppositely directed coupler with a negative-index metamaterial channel. Phys. Rev. E 82, 056605 (2010)

    Article  ADS  Google Scholar 

  14. Acreman, A., Kaczmarek, M., D’Alessandro, G.: Gold nanoparticle liquid crystal composites as a tunable nonlinear medium. Phys. Rev. E 90, 012504 (2014)

    Article  ADS  Google Scholar 

  15. Reyes-Gomez, E., Cavalcanti, S.B., Oliveira, L.E.: Non-Bragg-gap solitons in one-dimensional Kerr-metamaterial Fibonacci heterostructures. Phys. Rev. E 91, 063205 (2015)

    Article  ADS  Google Scholar 

  16. Wu, L.Z.: Cylindrical thermal cloak based on the path design of heat flux. J. Heat Transfer 137, 021301 (2015)

    Article  Google Scholar 

  17. Xu, G.Q., Zhang, H.C., Zou, Q., Jin, Y.: Predicting and analyzing interaction of the thermal cloaking performance through response surface method. Int. J. Heat Mass transfer 109, 746–754 (2017)

    Article  Google Scholar 

  18. Ji, Q., Huang, J.P.: Controlling thermal conduction by graded materials. Commun. Theor. Phys. 69, 434–440 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  19. Milton, G.W.: The Theory of Composites. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  20. Li, Y.Y., Li, N.B., Li, B.W.: Temperature dependence of thermal conductivities of coupled rotator lattice and the momentum diffusion in standard map. Eur. Phys. J. B 88, 182 (2015)

    Article  ADS  Google Scholar 

  21. Dong, L., Gu, G.Q., Yu, K.W.: First-principles approach to dielectric response of graded spherical particles. Phys. Rev. B 67, 224205 (2003)

    Article  ADS  Google Scholar 

  22. Dong, L., Huang, J.P., Yu, K.W., Gu, G.Q.: Multipole polarizability of a graded spherical particle. Eur. Phys. J. B 48, 439 (2005)

    Article  ADS  Google Scholar 

  23. Fan, C.Z., Gao, Y.H., Gao, Y., Huang, J.P.: Apparently negative electric polarization in shaped graded dielectric metamaterials. Commun. Theor. Phys. 53, 913–919 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Ping Huang .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, JP. (2020). Heat Conduction Equation. In: Theoretical Thermotics. Springer, Singapore. https://doi.org/10.1007/978-981-15-2301-4_7

Download citation

Publish with us

Policies and ethics