Skip to main content

Macroscopic Theory for Thermal Composites: Effective Medium Theory, Rayleigh Method and Perturbation Method

  • Chapter
  • First Online:
Theoretical Thermotics
  • 679 Accesses

Abstract

Thermal conductivity can depend on temperature (namely, nonlinear), which is common in nature. Since composites are widely used in thermal metamaterials to tailor thermal conductivities and other macroscopic properties, a fundamental problem is how to predict the effective thermal conductivity (\(\kappa _{e}\)) of composites. In this chapter, we present various kinds of theories or methods to calculate both linear and nonlinear part of \(\kappa _{e}\), which include the effective medium theory, the Rayleigh method and the perturbation method. We show their validity by comparing with the numerical results from finite-element simulations for periodic composites with linear or nonlinear thermal conductivities. Also, we investigate the condition for generating nonlinearity enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 64.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Garnett, J.C.M.: Colours in metal glasses and in metallic films. Philos. Trans. R. Soc. London Ser. A 203, 385 (1904)

    Google Scholar 

  2. Bruggeman, D.A.G.: Berechnung verschiedener physikalischer Konstanten von heterogenen substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen (Calculation of different physical constants of heterogeneous substances. I. Dielectricity and conductivity of mixtures of isotropic substances). Annalen der Physik 24, 636–664 (1935)

    Article  ADS  Google Scholar 

  3. Dai, G.L., Huang, J.P.: Nonlinear thermal conductivity of periodic composites. Int. J. Heat Mass Transfer 147, 118917 (2020)

    Article  Google Scholar 

  4. Xu, L.J., Jiang, C.R., Shang, J., Wang, R.Z., Huang, J.P.: Periodic composites: quasi-uniform heat conduction, Janus thermal illusion, and illusion thermal diodes. Eur. Phys. J. B 90, 221 (2017)

    Article  ADS  Google Scholar 

  5. Rayleigh, L.: On the influence of obstacles arranged in rectangular order upon the properties of a medium. Philos. Mag. 34, 481–502 (1892)

    Article  Google Scholar 

  6. Gu, G.Q., Yu, K.W., Hui, P.M.: First-principles approach to conductivity of a nonlinear composite. Phys. Rev. B 58, 3057 (1998)

    Article  ADS  Google Scholar 

  7. Gu, G.Q., Yu, K.W.: Effective conductivity of nonlinear composites. Phys. Rev. B 46, 4502 (1992)

    Article  ADS  Google Scholar 

  8. Yu, K.W., Gu, G.Q.: Effective conductivity of nonlinear composites. II. Effective-medium approximation. Phys. Rev. B 47, 7568 (1993)

    Article  ADS  Google Scholar 

  9. Dai, G.L., Shang, J., Wang, R.Z., Huang, J.P.: Nonlinear thermotics: nonlinearity enhancement and harmonic generation in thermal metasurfaces. Eur. Phys. J. B 91, 59 (2018)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Ping Huang .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, JP. (2020). Macroscopic Theory for Thermal Composites: Effective Medium Theory, Rayleigh Method and Perturbation Method. In: Theoretical Thermotics. Springer, Singapore. https://doi.org/10.1007/978-981-15-2301-4_6

Download citation

Publish with us

Policies and ethics