Skip to main content

Theory for Isotropic Core and Anisotropic Shell: Thermal Golden Touch

  • Chapter
  • First Online:
Theoretical Thermotics
  • 650 Accesses

Abstract

This chapter introduces the phenomenon of golden touch from myth to thermotics. We define golden touch as extending the core property to shell with extremely small core fraction. We obtain the requirement of golden touch by making the effective thermal conductivity of the core-shell structure equal to the thermal conductivity of the core. We summarize three types (A, B, and C) of golden touch in two dimensions, and only two types (A and B) of golden touch in three dimensions. We theoretically analyze the distinct properties of different types of golden touch by delicately designing the anisotropic thermal conductivity of the shell. Golden touch is also validated by finite-element simulations, which echo with the theoretical analyses. Golden touch has potential applications in thermal camouflage, thermal management, etc. This chapter not only lays the foundation for golden touch in thermotics, but also provides guidance for exploring golden touch in other diffusive fields like electrostatic and magnetostatic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 64.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xu, L.J., Yang, S., Huang, J.P.: Designing the effective thermal conductivity of materials of core-shell structure: theory and simulation. Phys. Rev. E 99, 022107 (2019)

    Article  ADS  Google Scholar 

  2. Bergman, D.J., Stroud, D.: Physical properties of macroscopically inhomogeneous media. Solid State Phys. 46, 147–269 (1992)

    Article  Google Scholar 

  3. Huang, J.P., Yu, K.W.: Enhanced nonlinear optical responses of materials: composite effects. Phys. Rep. 431, 87–172 (2006)

    Article  ADS  Google Scholar 

  4. Yang, S., Xu, L.J., Wang, R.Z., Huang, J.P.: Full control of heat transfer in single-particle structural materials. Appl. Phys. Lett. 111, 121908 (2017)

    Article  ADS  Google Scholar 

  5. Xu, L.J., Jiang, C.R., Shang, J., Wang, R.Z., Huang, J.P.: Periodic composites: Quasi-uniform heat conduction, Janus thermal illusion, and illusion thermal diodes. Eur. Phys. J. B 90, 221 (2017)

    Article  ADS  Google Scholar 

  6. Fan, C.Z., Gao, Y., Huang, J.P.: Shaped graded materials with an apparent negative thermal conductivity. Appl. Phys. Lett. 92, 251907 (2008)

    Article  ADS  Google Scholar 

  7. Narayana, S., Sato, Y.: Heat flux manipulation with engineered thermal materials. Phys. Rev. Lett. 108, 214303 (2012)

    Article  ADS  Google Scholar 

  8. Han, T.C., Yuan, T., Li, B.W., Qiu, C.-W.: Homogeneous thermal cloak with constant conductivity and tunable heat localization. Sci. Rep. 3, 1593 (2013)

    Article  ADS  Google Scholar 

  9. Xu, H.Y., Shi, X.H., Gao, F., Sun, H.D., Zhang, B.L.: Ultrathin three-dimensional thermal cloak. Phys. Rev. Lett. 112, 054301 (2014)

    Article  ADS  Google Scholar 

  10. Han, T.C., Bai, X., Gao, D.L., Thong, J.T.L., Li, B.W., Qiu, C.-W.: Experimental demonstration of a bilayer thermal cloak. Phys. Rev. Lett. 112, 054302 (2014)

    Article  ADS  Google Scholar 

  11. Ma, Y.G., Liu, Y.C., Raza, M., Wang, Y.D., He, S.L.: Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously. Phys. Rev. Lett. 113, 205501 (2014)

    Article  ADS  Google Scholar 

  12. Han, T.C., Zhao, J.J., Yuan, T., Lei, D.Y., Li, B.W., Qiu, C.W.: Theoretical realization of an ultra-efficient thermalenergy harvesting cell made of natural materials. Energ. Environ. Sci. 6, 3537–3541 (2013)

    Article  Google Scholar 

  13. Moccia, M., Castaldi, G., Savo, S., Sato, Y., Galdi, V.: Independent manipulation of heat and electrical current via bifunctional metamaterials. Phys. Rev. X 4, 021025 (2014)

    Google Scholar 

  14. Chen, T.Y., Weng, C.N., Tsai, Y.L.: Materials with constant anisotropic conductivity as a thermal cloak or concentrator. J. Appl. Phys. 117, 054904 (2015)

    Article  ADS  Google Scholar 

  15. Shen, X.Y., Li, Y., Jiang, C.R., Ni, Y.S., Huang, J.P.: Thermal cloak-concentrator. Appl. Phys. Lett. 109, 031907 (2016)

    Article  ADS  Google Scholar 

  16. Han, T.C., Bai, X., Thong, J.T.L., Li, B.W., Qiu, C.-W.: Full control and manipulation of heat signatures: cloaking, camouflage and thermal metamaterials. Adv. Mat. 26, 1731–1734 (2014)

    Article  Google Scholar 

  17. Yang, T.Z., Bai, X., Gao, D.L., Wu, L.Z., Li, B.W., Thong, J.T.L., Qiu, C.W.: Invisible sensors: simultaneous sensing and camouflaging in multiphysical fields. Adv. Mater. 27, 7752–7758 (2015)

    Article  Google Scholar 

  18. Yang, T.Z., Su, Y.S., Xu, W.K., Yang, X.D.: Transient thermal camouflage and heat signature control. Appl. Phys. Lett. 109, 121905 (2016)

    Article  ADS  Google Scholar 

  19. Xu, L.J., Wang, R.Z., Huang, J.P.: Camouflage thermotics: a cavity without disturbing heat signatures outside. J. Appl. Phys. 123, 245111 (2018)

    Article  ADS  Google Scholar 

  20. Xu, L.J., Huang, J.P.: A transformation theory for camouflaging arbitrary heat sources. Phys. Lett. A 382, 3313 (2018)

    Article  ADS  Google Scholar 

  21. Hu, R., Zhou, S.L., Li, Y., Lei, D.Y., Luo, X.B., Qiu, C.W.: Illusion thermotics. Adv. Mater. 30, 1707237 (2018)

    Article  Google Scholar 

  22. Zhou, S.L., Hu, R., Luo, X.B.: Thermal illusion with twinborn-like heat signatures. Int. J. Heat Mass Transf. 127, 607 (2018)

    Article  Google Scholar 

  23. Lepri, S., Livi, R., Politi, A.: Thermal conduction in classical low-dimensional lattices. Phys. Rep. 377, 1 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  24. Wegener, M.: Metamaterials beyond optics. Science 342, 939–940 (2013)

    Article  ADS  Google Scholar 

  25. Gao, Y., Huang, J.P.: Unconventional thermal cloak hiding an object outside the cloak. EPL (Europhys. Lett.) 104, 44001 (2013)

    Article  ADS  Google Scholar 

  26. Shen, X.Y., Huang, J.P.: Thermally hiding an object inside a cloak with feeling. Int. J. Heat Mass Transf. 78, 1 (2014)

    Article  Google Scholar 

  27. Nguyen, D.M., Xu, H.Y., Zhang, Y.M., Zhang, B.L.: Active thermal cloak. Appl. Phys. Lett. 107, 121901 (2015)

    Article  ADS  Google Scholar 

  28. Garnett, J.C.M.: Colours in metal glasses and in metallic films. Philos. Trans. R. Soc. London Ser. A 203, 385 (1904)

    Google Scholar 

  29. Bruggeman, D.A.G.: Berechnung verschiedener physikalischer Konstanten von heterogenen substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen (Calculation of different physical constants of heterogeneous substances. I. Dielectricity and conductivity of mixtures of isotropic substances). Annalen der Physik 24, 636–664 (1935)

    Article  ADS  Google Scholar 

  30. Dai, G.L., Shang, J., Wang, R.Z., Huang, J.P.: Nonlinear thermotics: nonlinearity enhancement and harmonic generation in thermal metasurfaces. Eur. Phys. J. B 91, 59 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  31. Gomory, F., Solovyov, M., Souc, J., Navau, C., Camps, J.P., Sanchez, A.: Experimental realization of a magnetic cloak. Science 335, 1466–1468 (2012)

    Article  ADS  Google Scholar 

  32. Batlle, R.M., Parra, A., Laut, S., Valle, N.D., Navau, C., Sanchez, A.: Magnetic illusion: transforming a magnetic object into another object by negative permeability. Phys. Rev. Appl. 9, 034007 (2018)

    Article  ADS  Google Scholar 

  33. Jiang, W., Ma, Y.G., He, S.L.: Static magnetic cloak without a superconductor. Phys. Rev. Appl. 9, 054041 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Ping Huang .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, JP. (2020). Theory for Isotropic Core and Anisotropic Shell: Thermal Golden Touch. In: Theoretical Thermotics. Springer, Singapore. https://doi.org/10.1007/978-981-15-2301-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2301-4_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2300-7

  • Online ISBN: 978-981-15-2301-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics