Skip to main content

Coupling Theory for Temperature-Dependent Thermal Conductivities: Nonlinearity Modulation and Enhancement

  • Chapter
  • First Online:
Theoretical Thermotics
  • 653 Accesses

Abstract

Thermal metamaterials based on core-shell structures have aroused wide research interest, e.g., thermal cloaks. However, almost all the relevant studies only discuss linear materials whose thermal conductivities are temperature-independent constants. Nonlinear materials (whose thermal conductivities depend on temperatures) have seldom been touched, which, however, are important in practical applications. This situation largely results from the lack of a theoretical framework for handling such nonlinear problems. Here we study the nonlinear responses of thermal metamaterials with a core-shell structure in two or three dimensions. By calculating the effective thermal conductivity, we derive the nonlinear modulation of a nonlinear core. Furthermore, we reveal two thermal coupling conditions, under which this nonlinear modulation can be efficiently manipulated. In particular, we reveal the phenomenon of nonlinearity enhancement. Then this theory helps us to design a kind of intelligent thermal transparency devices, which can respond to the direction of thermal fields. The theoretical results and finite-element simulations agree well with each other. This chapter not only offers a different mechanism to achieve nonlinearity modulation and enhancement in thermotics, but also suggests potential applications in thermal management including illusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 64.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fan, C.Z., Gao, Y., Huang, J.P.: Shaped graded materials with an apparent negative thermal conductivity. Appl. Phys. Lett. 92, 251907 (2008)

    Article  ADS  Google Scholar 

  2. Chen, T.Y., Weng, C.N., Chen, J.S.: Cloak for curvilinearly anisotropic media in conduction. Appl. Phys. Lett. 93, 114103 (2008)

    Article  ADS  Google Scholar 

  3. Guenneau, S., Amra, C., Veynante, D.: Transformation thermodynamics: cloaking and concentrating heat flux. Opt. Express 20, 8207–8218 (2012)

    Article  ADS  Google Scholar 

  4. Narayana, S., Sato, Y.: Heat flux manipulation with engineered thermal materials. Phys. Rev. Lett. 108, 214303 (2012)

    Article  ADS  Google Scholar 

  5. Schittny, R., Kadic, M., Guenneau, S., Wegener, M.: Experiments on transformation thermodynamics: molding the flow of heat. Phys. Rev. Lett. 110, 195901 (2013)

    Article  ADS  Google Scholar 

  6. Xu, H.Y., Shi, X.H., Gao, F., Sun, H.D., Zhang, B.L.: Ultrathin three-dimensional thermal cloak. Phys. Rev. Lett. 112, 054301 (2014)

    Article  ADS  Google Scholar 

  7. Han, T.C., Bai, X., Gao, D.L., Thong, J.T.L., Li, B.W., Qiu, C.-W.: Experimental demonstration of a bilayer thermal cloak. Phys. Rev. Lett. 112, 054302 (2014)

    Article  ADS  Google Scholar 

  8. Ma, Y.G., Liu, Y.C., Raza, M., Wang, Y.D., He, S.L.: Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously. Phys. Rev. Lett. 113, 205501 (2014)

    Article  ADS  Google Scholar 

  9. Guenneau, S., Amra, C.: Anisotropic conductivity rotates heat fluxes in transient regimes. Opt. Express 21, 6578–6583 (2013)

    Article  ADS  Google Scholar 

  10. Xu, L.J., Yang, S., Huang, J.P.: Thermal theory for heterogeneously architected structure: fundamentals and application. Phys. Rev. E 98, 052128 (2018)

    Article  ADS  Google Scholar 

  11. He, X., Wu, L.Z.: Thermal transparency with the concept of neutral inclusion. Phys. Rev. E 88, 033201 (2013)

    Article  ADS  Google Scholar 

  12. Zeng, L.W., Song, R.X.: Experimental observation of heat transparency. Appl. Phys. Lett. 104, 201905 (2014)

    Article  ADS  Google Scholar 

  13. Yang, T.Z., Bai, X., Gao, D.L., Wu, L.Z., Li, B.W., Thong, J.T.L., Qiu, C.W.: Invisible sensors: simultaneous sensing and camouflaging in multiphysical fields. Adv. Mater. 27, 7752–7758 (2015)

    Article  Google Scholar 

  14. Yang, S., Xu, L.J., Wang, R.Z., Huang, J.P.: Full control of heat transfer in single-particle structural materials. Appl. Phys. Lett. 111, 121908 (2017)

    Article  ADS  Google Scholar 

  15. Wang, R.Z., Xu, L.J., Ji, Q., Huang, J.P.: A thermal theory for unifying and designing transparency, concentrating and cloaking. J. Appl. Phys. 123, 115117 (2018)

    Article  ADS  Google Scholar 

  16. Xu, L.J., Yang, S., Huang, J.P.: Thermal transparency induced by periodic interparticle interaction. Phys. Rev. Appl. 11, 034056 (2019)

    Article  ADS  Google Scholar 

  17. Han, T.C., Bai, X., Thong, J.T.L., Li, B.W., Qiu, C.-W.: Full control and manipulation of heat signatures: cloaking, camouflage and thermal metamaterials. Adv. Mat. 26, 1731–1734 (2014)

    Article  Google Scholar 

  18. Yang, T.Z., Su, Y.S., Xu, W.K., Yang, X.D.: Transient thermal camouflage and heat signature control. Appl. Phys. Lett. 109, 121905 (2016)

    Article  ADS  Google Scholar 

  19. Li, Y., Bai, X., Yang, T.Z., Luo, H., Qiu, C.W.: Structured thermal surface for radiative camouflage. Nat. Commun. 9, 273 (2018)

    Article  ADS  Google Scholar 

  20. Hu, R., Zhou, S.L., Li, Y., Lei, D.Y., Luo, X.B., Qiu, C.W.: Illusion thermotics. Adv. Mater. 30, 1707237 (2018)

    Article  Google Scholar 

  21. Zhou, S.L., Hu, R., Luo, X.B.: Thermal illusion with twinborn-like heat signatures. Int. J. Heat Mass Transfer 127, 607 (2018)

    Article  Google Scholar 

  22. Xu, L.J., Wang, R.Z., Huang, J.P.: Camouflage thermotics: a cavity without disturbing heat signatures outside. J. Appl. Phys. 123, 245111 (2018)

    Article  ADS  Google Scholar 

  23. Xu, L.J., Huang, J.P.: A transformation theory for camouflaging arbitrary heat sources. Phys. Lett. A 382, 3313 (2018)

    Article  ADS  Google Scholar 

  24. Vemuri, K.P., Bandaru, P.R.: Anomalous refraction of heat flux in thermal metamaterials. Appl. Phys. Lett. 104, 083901 (2014)

    Article  ADS  Google Scholar 

  25. Yang, T.Z., Vemuri, K.P., Bandaru, P.R.: Experimental evidence for the bending of heat flux in a thermal metamaterial. Appl. Phys. Lett. 105, 083908 (2014)

    Article  ADS  Google Scholar 

  26. Vemuri, K.P., Canbazoglu, F.M., Bandaru, P.R.: Guiding conductive heat flux through thermal metamaterials. Appl. Phys. Lett. 105, 193904 (2014)

    Article  Google Scholar 

  27. Kapadia, R.S., Bandaru, P.R.: Heat flux concentration through polymeric thermal lenses. Appl. Phys. Lett. 105, 233903 (2014)

    Article  ADS  Google Scholar 

  28. Li, Y., Shen, X.Y., Wu, Z.H., Huang, J.Y., Chen, Y.X., Ni, Y.S., Huang, J.P.: Temperature-dependent transformation thermotics: from switchable thermal cloaks to macroscopic thermal diodes. Phys. Rev. Lett. 115, 195503 (2015)

    Article  ADS  Google Scholar 

  29. Li, Y., Shen, X.Y., Huang, J.P., Ni, Y.S.: Temperature-dependent transformation thermotics for unsteady states: switchable concentrator for transient heat flow. Phys. Lett. A 380, 1641 (2016)

    Article  ADS  Google Scholar 

  30. Shen, X.Y., Li, Y., Jiang, C.R., Ni, Y.S., Huang, J.P.: Thermal cloak-concentrator. Appl. Phys. Lett. 109, 031907 (2016)

    Article  ADS  Google Scholar 

  31. Shen, X.Y., Li, Y., Jiang, C.R., Huang, J.P.: Temperature trapping: energy-free maintenance of constant temperatures as ambient temperature gradients change. Phys. Rev. Lett. 117, 055501 (2016)

    Article  ADS  Google Scholar 

  32. Dai, G.L., Shang, J., Wang, R.Z., Huang, J.P.: Nonlinear thermotics: nonlinearity enhancement and harmonic generation in thermal metasurfaces. Eur. Phys. J. B 91, 59 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  33. Nicorovici, N.A., McPhedran, R.C.: Optical and dielectric properties of partially resonant composites. Phys. Rev. B 49, 8479 (1994)

    Article  ADS  Google Scholar 

  34. Levy, O.: Nonlinear properties of partially resonant composites. J. Appl. Phys. 77, 1696 (1995)

    Article  ADS  Google Scholar 

  35. Huang, J.P., Yu, K.W.: Enhanced nonlinear optical responses of materials: composite effects. Phys. Rep. 431, 87–172 (2006)

    Article  ADS  Google Scholar 

  36. Liu, D.H., Xu, C., Hui, P.M.: Effects of a coating of spherically anisotropic material in core-shell particles. Appl. Phys. Lett. 92, 181901 (2008)

    Article  ADS  Google Scholar 

  37. Zhang, W., Ji, M., Liu, D.H.: Linear and nonlinear properties for a dilute suspension of coated ellipsoids. Phys. Lett. A 373, 2729 (2009)

    Article  ADS  Google Scholar 

  38. Zhang, W., Liu, D.H.: Second harmonic generation in composites of ellipsoidal particles with core-shell structure. Solid State Commun. 149, 146 (2009)

    Article  ADS  Google Scholar 

  39. Zeller, R.C., Pohl, R.O.: Thermal conductivity and specific heat of noncrystalline solids. Phys. Rev. B 4, 2029–2041 (1971)

    Article  ADS  Google Scholar 

  40. Glassbrenner, C.J., Slack, G.A.: Thermal conductivity of silicon and germanium from 3 K to the melting point. Phys. Rev. 134, A1058–A1069 (1964)

    Article  ADS  Google Scholar 

  41. Wegener, M.: Metamaterials beyond optics. Science 342, 939–940 (2013)

    Article  ADS  Google Scholar 

  42. Gao, Y., Huang, J.P.: Unconventional thermal cloak hiding an object outside the cloak. EPL (Europhys. Lett.) 104, 44001 (2013)

    Article  ADS  Google Scholar 

  43. Shen, X.Y., Huang, J.P.: Thermally hiding an object inside a cloak with feeling. Int. J. Heat Mass Transfer 78, 1 (2014)

    Article  Google Scholar 

  44. Xu, L.J., Yang, S., Huang, J.P.: Designing the effective thermal conductivity of materials of core-shell structure: theory and simulation. Phys. Rev. E 99, 022107 (2019)

    Article  ADS  Google Scholar 

  45. Nguyen, D.M., Xu, H.Y., Zhang, Y.M., Zhang, B.L.: Active thermal cloak. Appl. Phys. Lett. 107, 121901 (2015)

    Article  ADS  Google Scholar 

  46. Yang, S., Xu, L.J., Huang, J.P.: Metathermotics: nonlinear thermal responses of core-shell metamaterials. Phys. Rev. E 99, 042144 (2019)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Ping Huang .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, JP. (2020). Coupling Theory for Temperature-Dependent Thermal Conductivities: Nonlinearity Modulation and Enhancement. In: Theoretical Thermotics. Springer, Singapore. https://doi.org/10.1007/978-981-15-2301-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2301-4_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2300-7

  • Online ISBN: 978-981-15-2301-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics