Skip to main content

Coupling Theory for Temperature-Independent Thermal Conductivities: Thermal Correlated Self-Fixing

  • Chapter
  • First Online:
Theoretical Thermotics
  • 659 Accesses

Abstract

It is a challenge to design intelligent thermal metamaterials due to the lack of suitable theories. Here we propose a kind of intelligent thermal metamaterials by investigating a core-shell structure, where both the core and shell have an anisotropic thermal conductivity. We solve Laplace’s equation for deriving the equivalent thermal conductivity of the core-shell structure. Amazingly, the solution gives two coupling relations of conductivity tensors between the core and shell, which cause the whole core-shell structure to counter-intuitively self-fix a constant isotropic conductivity even when the area or volume fraction of core changes within the full range in two or three dimensions. The theoretical findings on fraction-independent properties are in sharp contrast to those predicted by the well-known effective medium theories, and they are further confirmed with our laboratory experiments and computer simulations. This chapter offers two coupling relations for designing intelligent thermal metamaterials, and they are not only helpful for thermal stabilization or camouflage/illusion, but also offer hints on how to achieve similar metamaterials in other fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 64.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maldovan, M.: Sound and heat revolutions in phononics. Nature 503, 209–217 (2013)

    Article  ADS  Google Scholar 

  2. Wegener, M.: Metamaterials beyond optics. Science 342, 939–940 (2013)

    Article  ADS  Google Scholar 

  3. Fan, C.Z., Gao, Y., Huang, J.P.: Shaped graded materials with an apparent negative thermal conductivity. Appl. Phys. Lett. 92, 251907 (2008)

    Article  ADS  Google Scholar 

  4. Chen, T.Y., Weng, C.N., Chen, J.S.: Cloak for curvilinearly anisotropic media in conduction. Appl. Phys. Lett. 93, 114103 (2008)

    Article  ADS  Google Scholar 

  5. Guenneau, S., Amra, C., Veynante, D.: Transformation thermodynamics: cloaking and concentrating heat flux. Opt. Express 20, 8207–8218 (2012)

    Article  ADS  Google Scholar 

  6. Narayana, S., Sato, Y.: Heat flux manipulation with engineered thermal materials. Phys. Rev. Lett. 108, 214303 (2012)

    Article  ADS  Google Scholar 

  7. Schittny, R., Kadic, M., Guenneau, S., Wegener, M.: Experiments on transformation thermodynamics: molding the flow of heat. Phys. Rev. Lett. 110, 195901 (2013)

    Article  ADS  Google Scholar 

  8. Hu, R., Xie, B., Hu, J.Y., Chen, Q., Luo, X.B.: Carpet thermal cloak realization based on the refraction law of heat flux. EPL (Europhys. Lett.) 111, 54003 (2015)

    Article  ADS  Google Scholar 

  9. Li, J.Y., Gao, Y., Huang, J.P.: A bifunctional cloak using transformation media. J. Appl. Phys. 108, 074504 (2010)

    Article  ADS  Google Scholar 

  10. Ma, Y.G., Liu, Y.C., Raza, M., Wang, Y.D., He, S.L.: Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously. Phys. Rev. Lett. 113, 205501 (2014)

    Article  ADS  Google Scholar 

  11. Stedman, T., Woods, L.M.: Cloaking of thermoelectric transport. Sci. Rep. 7, 6988 (2017)

    Article  ADS  Google Scholar 

  12. Moccia, M., Castaldi, G., Savo, S., Sato, Y., Galdi, V.: Independent manipulation of heat and electrical current via bifunctional metamaterials. Phys. Rev. X 4, 021025 (2014)

    Google Scholar 

  13. Lan, C.W., Li, B., Zhou, J.: Simultaneously concentrated electric and thermal fields using fan-shaped structure. Opt. Express 23, 24475 (2015)

    Article  ADS  Google Scholar 

  14. Peng, R.G., Xiao, Z.Q., Zhao, Q., Zhang, F.L., Meng, Y.G., Li, B., Zhou, J., Fan, Y.C., Zhang, P., Shen, N.-H., Koschny, T., Soukoulis, C.M.: Temperature-controlled chameleonlike cloak. Phys. Rev. X 7, 011033 (2017)

    Google Scholar 

  15. Xu, L.J., Yang, S., Huang, J.P.: Thermal theory for heterogeneously architected structure: fundamentals and application. Phys. Rev. E 98, 052128 (2018)

    Article  ADS  Google Scholar 

  16. Li, Y., Shen, X.Y., Wu, Z.H., Huang, J.Y., Chen, Y.X., Ni, Y.S., Huang, J.P.: Temperature-dependent transformation thermotics: from switchable thermal cloaks to macroscopic thermal diodes. Phys. Rev. Lett. 115, 195503 (2015)

    Article  ADS  Google Scholar 

  17. Shen, X.Y., Li, Y., Jiang, C.R., Ni, Y.S., Huang, J.P.: Thermal cloak-concentrator. Appl. Phys. Lett. 109, 031907 (2016)

    Article  ADS  Google Scholar 

  18. Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids, 2nd edn. Clarendon Press, Oxford (1959)

    MATH  Google Scholar 

  19. Nicorovici, N.A., McPhedran, R.C., Milton, G.W.: Optical and dielectric properties of partially resonant composites. Phys. Rev. B 49, 8479 (1994)

    Article  ADS  Google Scholar 

  20. Yang, S., Xu, L.J., Huang, J.P.: Intelligence thermotics: correlated self-fixing behavior of thermal metamaterials. EPL (Europhys. Lett.) 126, 54001 (2019)

    Article  ADS  Google Scholar 

  21. Gao, Y., Huang, J.P.: Unconventional thermal cloak hiding an object outside the cloak. EPL (Europhys. Lett.) 104, 44001 (2013)

    Article  ADS  Google Scholar 

  22. Nguyen, D.M., Xu, H.Y., Zhang, Y.M., Zhang, B.L.: Active thermal cloak. Appl. Phys. Lett. 107, 121901 (2015)

    Article  ADS  Google Scholar 

  23. Lan, C.W., Bi, K., Gao, Z.H., Li, B., Zhou, J.: Achieving bifunctional cloak via combination of passive and active schemes. Appl. Phys. Lett. 109, 201903 (2016)

    Article  ADS  Google Scholar 

  24. Han, T.C., Bai, X., Thong, J.T.L., Li, B.W., Qiu, C.-W.: Full control and manipulation of heat signatures: cloaking, camouflage and thermal metamaterials. Adv. Mat. 26, 1731–1734 (2014)

    Article  Google Scholar 

  25. He, X., Wu, L.Z.: Illusion thermodynamics: a camouflage technique changing an object into another one with arbitrary cross section. Appl. Phys. Lett. 105, 221904 (2014)

    Article  ADS  Google Scholar 

  26. Yang, T.Z., Bai, X., Gao, D.L., Wu, L.Z., Li, B.W., Thong, J.T.L., Qiu, C.W.: Invisible sensors: simultaneous sensing and camouflaging in multiphysical fields. Adv. Mater. 27, 7752–7758 (2015)

    Article  Google Scholar 

  27. Yang, T.Z., Su, Y.S., Xu, W.K., Yang, X.D.: Transient thermal camouflage and heat signature control. Appl. Phys. Lett. 109, 121905 (2016)

    Article  ADS  Google Scholar 

  28. Xu, L.J., Jiang, C.R., Shang, J., Wang, R.Z., Huang, J.P.: Periodic composites: quasi-uniform heat conduction, Janus thermal illusion, and illusion thermal diodes. Eur. Phys. J. B 90, 221 (2017)

    Article  ADS  Google Scholar 

  29. Hu, R., Zhou, S.L., Li, Y., Lei, D.Y., Luo, X.B., Qiu, C.W.: Illusion thermotics. Adv. Mater. 30, 1707237 (2018)

    Article  Google Scholar 

  30. Zhou, S.L., Hu, R., Luo, X.B.: Thermal illusion with twinborn-like heat signatures. Int. J. Heat Mass Transf. 127, 607 (2018)

    Article  Google Scholar 

  31. Xu, L.J., Wang, R.Z., Huang, J.P.: Camouflage thermotics: a cavity without disturbing heat signatures outside. J. Appl. Phys. 123, 245111 (2018)

    Article  ADS  Google Scholar 

  32. Xu, L.J., Huang, J.P.: A transformation theory for camouflaging arbitrary heat sources. Phys. Lett. A 382, 3313 (2018)

    Article  ADS  Google Scholar 

  33. Li, Y., Bai, X., Yang, T.Z., Luo, H., Qiu, C.W.: Structured thermal surface for radiative camouflage. Nat. Commun. 9, 273 (2018)

    Article  ADS  Google Scholar 

  34. Wang, R.Z., Xu, L.J., Ji, Q., Huang, J.P.: A thermal theory for unifying and designing transparency, concentrating and cloaking. J. Appl. Phys. 123, 115117 (2018)

    Article  ADS  Google Scholar 

  35. Milton, G.W., Nicorovici, N.A.P.: On the cloaking effects associated with anomalous localized. Proc. R. Soc. A 462, 3027–3059 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  36. Sklan, S.R., Bai, X., Li, B.W., Zhang, X.: Detecting thermal cloaks via transient effects. Sci. Rep. 6, 32915 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Ping Huang .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, JP. (2020). Coupling Theory for Temperature-Independent Thermal Conductivities: Thermal Correlated Self-Fixing. In: Theoretical Thermotics. Springer, Singapore. https://doi.org/10.1007/978-981-15-2301-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2301-4_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2300-7

  • Online ISBN: 978-981-15-2301-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics