Skip to main content

Temperature Trapping Theory: Energy-Free Thermostat

  • Chapter
  • First Online:
Theoretical Thermotics
  • 651 Accesses

Abstract

It is crucial to maintain constant temperatures in an energy-efficient way. Here we present a temperature-trapping theory for asymmetric phase-transition materials with thermally responsive thermal conductivities. Then we theoretically introduce and experimentally demonstrate a concept of energy-free thermostat within ambient temperature gradients. The thermostat is capable of self-maintaining a desired constant temperature without the need of consuming energy even though the environmental temperature gradient varies in a large range. As a model application of the concept, we design and show a different type of thermal cloak that has a constant temperature inside its central region in spite of the changing ambient temperature gradient, which is in sharp contrast to all the existing thermal cloaks. This chapter has relevance to energy-saving heat preservation, and it provides guidance both for manipulating heat flow without energy consumption and for designing new metamaterials with temperature-responsive or field-responsive parameters in many disciplines such as thermotics, optics, electromagnetics, acoustics, mechanics, electrics, and magnetism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 64.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chu, S., Majumdar, A.: Opportunities and challenges for a sustainable energy future. Nature (London) 488, 294–303 (2012)

    Article  ADS  Google Scholar 

  2. Maldovan, M.: Phonon wave interference and thermal bandgap materials. Nature Mater. 14, 667–674 (2015)

    Article  ADS  Google Scholar 

  3. Hu, Y., Zeng, L., Minnich, A.J., Dresselhaus, M.S., Chen, G.: Spectral mapping of thermal conductivity through nanoscale ballistic transport. Nature Nanotech. 10, 701–706 (2015)

    Article  ADS  Google Scholar 

  4. Bell, L.E.: Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008)

    Article  ADS  Google Scholar 

  5. Biswas, K., He, J., Blum, I.D., Wu, C.-I., Hogan, T.P., Seidman, D.N., Dravid, V.P., Kanatzidis, M.G.: High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature (London) 489, 414–418 (2012)

    Article  ADS  Google Scholar 

  6. Zhao, L.D., Lo, S.-H., Zhang, Y., Sun, H., Tan, G., Uher, C., Wolverton, C., Dravid, V.P., Kanatzidis, M.G.: Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature (London) 508, 373–377 (2014)

    Article  ADS  Google Scholar 

  7. Li, B.W., Wang, L., Casati, G.: Thermal diode: rectification of heat flux. Phys. Rev. Lett. 93, 184301 (2004)

    Article  ADS  Google Scholar 

  8. Chang, C.W., Okawa, D., Majumdar, A., Zettl, A.: Solid-state thermal rectifier. Science 314, 1121–1124 (2006)

    Article  ADS  Google Scholar 

  9. Martínez-Pérez, M.J., Fornieri, A., Giazotto, F.: Rectification of electronic heat current by a hybrid thermal diode. Nature Nanotech. 10, 303–307 (2015)

    Article  ADS  Google Scholar 

  10. Glassbrenner, C.J., Slack, G.A.: Thermal conductivity of silicon and germanium from 3 K to the melting point. Phys. Rev. 134, A1058–A1069 (1964)

    Article  ADS  Google Scholar 

  11. Li, Y., Shen, X.Y., Wu, Z.H., Huang, J.Y., Chen, Y.X., Ni, Y.S., Huang, J.P.: Temperature-dependent transformation thermotics: from switchable thermal cloaks to macroscopic thermal diodes. Phys. Rev. Lett. 115, 195503 (2015)

    Article  ADS  Google Scholar 

  12. Fan, C.Z., Gao, Y., Huang, J.P.: Shaped graded materials with an apparent negative thermal conductivity. Appl. Phys. Lett. 92, 251907 (2008)

    Article  ADS  Google Scholar 

  13. Narayana, S., Sato, Y.: Heat flux manipulation with engineered thermal materials. Phys. Rev. Lett. 108, 214303 (2012)

    Article  ADS  Google Scholar 

  14. Maldovan, M.: Sound and heat revolutions in phononics. Nature 503, 209–217 (2013)

    Article  ADS  Google Scholar 

  15. Schittny, R., Kadic, M., Guenneau, S., Wegener, M.: Experiments on transformation thermodynamics: molding the flow of heat. Phys. Rev. Lett. 110, 195901 (2013)

    Article  ADS  Google Scholar 

  16. Ma, Y.G., Liu, Y.C., Raza, M., Wang, Y.D., He, S.L.: Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously. Phys. Rev. Lett. 113, 205501 (2014)

    Article  ADS  Google Scholar 

  17. Xu, H.Y., Shi, X.H., Gao, F., Sun, H.D., Zhang, B.L.: Ultrathin three-dimensional thermal cloak. Phys. Rev. Lett. 112, 054301 (2014)

    Article  ADS  Google Scholar 

  18. Han, T.C., Bai, X., Gao, D.L., Thong, J.T.L., Li, B.W., Qiu, C.-W.: Experimental demonstration of a bilayer thermal cloak. Phys. Rev. Lett. 112, 054302 (2014)

    Article  ADS  Google Scholar 

  19. Leonhardt, U.: Optical conformal mapping. Science 312, 1777–1780 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  20. Pendry, J.B., Schurig, D., Smith, D.R.: Controlling electromagnetic fields. Science 312, 1780–1782 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  21. High, A.A., Devlin, R.C., Dibos, A., Polking, M., Wild, D.S., Perczel, J., de Leon, N.P., Lukin, M.D., Park, H.: Visible-frequency hyperbolic metasurfaces. Nature (London) 522, 192–196 (2015)

    Article  ADS  Google Scholar 

  22. Kaina, N., Lemoult, F., Fink, M., Lerosey, G.: Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials. Nature (London) 525, 77–81 (2015)

    Article  ADS  Google Scholar 

  23. Zheng, R.T., Gao, J.W., Wang, J.J., Chen, G.: Reversible temperature regulation of electrical and thermal conductivity using liquid-solid phase transitions. Nat. Commun. 2, 289 (2011)

    Article  ADS  Google Scholar 

  24. Oh, D.-W., Ko, C., Ramanathan, S., Cahill, D.G.: Thermal conductivity and dynamic heat capacity across the metal-insulator transition in thin film VO\(_{2}\). Appl. Phys. Lett. 96, 151906 (2010)

    Article  ADS  Google Scholar 

  25. Siegert, K.S., Lange, F.R.L., Sittner, E.R., Volker, H., Schlockermann, C., Siegrist, T., Wuttig, M.: Impact of vacancy ordering on thermal transport in crystalline phase-change materials. Rep. Prog. Phys. 78, 013001 (2015)

    Article  ADS  Google Scholar 

  26. Huang, J.P., Yu, K.W.: Enhanced nonlinear optical responses of materials: composite effects. Phys. Rep. 431, 87–172 (2006)

    Article  ADS  Google Scholar 

  27. Chluba, C., Ge, W., de Miranda, R.L., Strobel, J., Kienle, L., Quandt, E., Wuttig, M.: Ultralow-fatigue shape memory alloy films. Science 348, 1004–1007 (2015)

    Article  ADS  Google Scholar 

  28. Dye, D.: Shape memory alloys: towards practical actuators. Nature Mater. 14, 760–761 (2015)

    Article  ADS  Google Scholar 

  29. Shen, X.Y., Li, Y., Jiang, C.R., Huang, J.P.: Temperature trapping: energy-free maintenance of constant temperatures as ambient temperature gradients change. Phys. Rev. Lett. 117, 055501 (2016)

    Article  ADS  Google Scholar 

  30. Wang, J., Shang, J., Huang, J.P.: Negative energy consumption of thermostats at ambient temperature: electricity generation with zero energy maintenance. Phys. Rev. Appl. 11, 024053 (2019)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Ping Huang .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, JP. (2020). Temperature Trapping Theory: Energy-Free Thermostat. In: Theoretical Thermotics. Springer, Singapore. https://doi.org/10.1007/978-981-15-2301-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2301-4_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2300-7

  • Online ISBN: 978-981-15-2301-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics