Skip to main content

Introduction

  • Chapter
  • First Online:
Theoretical Thermotics

Abstract

Classical thermodynamics pays a special attention to the passive description of macroscopic heat phenomena of natural systems with the theoretical framework of the four thermodynamic laws. In contrast, theoretical thermotics, introduced in this book, allows one to achieve the active control of macroscopic heat phenomena of artificial systems with the theoretical framework of transformation thermotics and extended theories. As a result, thermal metamaterials can be theoretically designed at will, which have abundant application values. Thus, a hot field comes to appear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 64.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang, J.P.: Thermal metamaterial: geometric structure, working mechanism, and novel function. Prog. Phys. 38, 219 (2018)

    Google Scholar 

  2. Li, B.W., Wang, L., Casati, G.: Thermal diode: rectification of heat flux. Phys. Rev. Lett. 93, 184301 (2004)

    Article  ADS  Google Scholar 

  3. Wang, L., Li, B.W.: Thermal logic gates: computation with phonons. Phys. Rev. Lett. 99, 177208 (2007)

    Article  ADS  Google Scholar 

  4. Wang, L., Li, B.W.: Thermal memory: a storage of phononic information. Phys. Rev. Lett. 101, 267203 (2008)

    Article  ADS  Google Scholar 

  5. Li, N.B., Ren, J., Wang, L., Zhang, G., Hänggi, P., Li, B.W.: Phononics: manipulating heat flow with electronic analogs and beyond. Rev. Mod. Phys. 84, 1045–1066 (2012)

    Article  ADS  Google Scholar 

  6. Ben-Abdallah, P., Biehs, S.-A.: Near-field thermal transistor. Phys. Rev. Lett. 112, 044301 (2014)

    Article  ADS  Google Scholar 

  7. Kubytskyi, V., Biehs, S.-A., Ben-Abdallah, P.: Radiative bistability and thermal memory. Phys. Rev. Lett. 113, 074301 (2014)

    Article  ADS  Google Scholar 

  8. Huang, C.L., Lin, Z.Z., Luo, D.C., Huang, Z.: Electronic thermal conductivity of 2-dimensional circular-pore metallic nanoporous materials. Phys. Lett. A 380, 3103–3106 (2016)

    Article  ADS  Google Scholar 

  9. Garnett, J.C.M.: Colours in metal glasses and in metallic films. Philos. Trans. R. Soc. London Ser. A 203, 385 (1904)

    Google Scholar 

  10. Bruggeman, D.A.G.: Berechnung verschiedener physikalischer Konstanten von heterogenen substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen (Calculation of different physical constants of heterogeneous substances. I. Dielectricity and conductivity of mixtures of isotropic substances). Annalen der Physik 24, 636–664 (1935)

    Article  ADS  Google Scholar 

  11. Bergman, D.J., Stroud, D.: Physical properties of macroscopically inhomogeneous media. Solid State Phys. 46, 147–269 (1992)

    Article  Google Scholar 

  12. Huang, J.P., Yu, K.W.: Enhanced nonlinear optical responses of materials: composite effects. Phys. Rep. 431, 87–172 (2006)

    Article  ADS  Google Scholar 

  13. Guyer, R.A., Krumhansl, J.A.: Solution of the linearized phonon Boltzmann equation. Phys. Rev. 148, 766–778 (1966)

    Article  ADS  Google Scholar 

  14. Guyer, R.A., Krumhansl, J.A.: Thermal conductivity, second sound, and phonon hydrodynamic phenomena in nonmetallic crystals. Phys. Rev. 148, 778–788 (1966)

    Article  ADS  Google Scholar 

  15. Tzou, D.Y.: The generalized lagging response in small-scale and high-rate heating. Int. J. Heat Mass Transfer 38, 3231–3240 (1995)

    Article  Google Scholar 

  16. Tzou, D.Y.: A unified field approach for heat conduction from macro- to micro-scales. J. Heat Transfer 117, 8–16 (1995)

    Article  Google Scholar 

  17. Chen, G.: Ballistic-diffusive heat-conduction equations. Phys. Rev. Lett. 86, 2297 (2001)

    Article  ADS  Google Scholar 

  18. Chen, G.: Ballistic-diffusive equations for transient heat conduction from nano to macroscales. J. Heat Transfer 124, 320–328 (2002)

    Article  Google Scholar 

  19. Guo, Y.Y., Wang, M.R.: Phonon hydrodynamics and its applications in nanoscale heat transport. Phys. Rep. 595, 1–44 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  20. Fan, C.Z., Gao, Y., Huang, J.P.: Shaped graded materials with an apparent negative thermal conductivity. Appl. Phys. Lett. 92, 251907 (2008)

    Article  ADS  Google Scholar 

  21. Pendry, J.B., Schurig, D., Smith, D.R.: Controlling electromagnetic fields. Science 312, 1780–1782 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Leonhardt, U.: Optical conformal mapping. Science 312, 1777–1780 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Chen, T.Y., Weng, C.N., Chen, J.S.: Cloak for curvilinearly anisotropic media in conduction. Appl. Phys. Lett. 93, 114103 (2008)

    Article  ADS  Google Scholar 

  24. Li, J.Y., Gao, Y., Huang, J.P.: A bifunctional cloak using transformation media. J. Appl. Phys. 108, 074504 (2010)

    Article  ADS  Google Scholar 

  25. Yu, G.X., Lin, Y.F., Zhang, G.Q., Yu, Z., Yu, L.L., Su, J.: Design of square-shaped heat flux cloaks and concentrators using method of coordinate transformation. Front. Phys. China 6, 70–73 (2011)

    Google Scholar 

  26. Guenneau, S., Amra, C., Veynante, D.: Transformation thermodynamics: cloaking and concentrating heat flux. Opt. Express 20, 8207–8218 (2012)

    Article  ADS  Google Scholar 

  27. Han, T.C., Yuan, T., Li, B.W., Qiu, C.-W.: Homogeneous thermal cloak with constant conductivity and tunable heat localization. Sci. Rep. 3, 1593 (2013)

    Article  ADS  Google Scholar 

  28. Narayana, S., Sato, Y.: Heat flux manipulation with engineered thermal materials. Phys. Rev. Lett. 108, 214303 (2012)

    Article  ADS  Google Scholar 

  29. Schittny, R., Kadic, M., Guenneau, S., Wegener, M.: Experiments on transformation thermodynamics: molding the flow of heat. Phys. Rev. Lett. 110, 195901 (2013)

    Article  ADS  Google Scholar 

  30. Han, T.C., Bai, X., Gao, D.L., Thong, J.T.L., Li, B.W., Qiu, C.-W.: Experimental demonstration of a bilayer thermal cloak. Phys. Rev. Lett. 112, 054302 (2014)

    Article  ADS  Google Scholar 

  31. Xu, H.Y., Shi, X.H., Gao, F., Sun, H.D., Zhang, B.L.: Ultrathin three-dimensional thermal cloak. Phys. Rev. Lett. 112, 054301 (2014)

    Article  ADS  Google Scholar 

  32. Ma, Y.G., Liu, Y.C., Raza, M., Wang, Y.D., He, S.L.: Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously. Phys. Rev. Lett. 113, 205501 (2014)

    Article  ADS  Google Scholar 

  33. Leonhardt, U.: Cloaking of heat. Nature 498, 440–441 (2013)

    Article  ADS  Google Scholar 

  34. Wegener, M.: Metamaterials beyond optics. Science 342, 939–940 (2013)

    Article  ADS  Google Scholar 

  35. Ball, P.: Against the flow. Nature Mater. 11, 566 (2012)

    Article  ADS  Google Scholar 

  36. Maldovan, M.: Sound and heat revolutions in phononics. Nature 503, 209–217 (2013)

    Article  ADS  Google Scholar 

  37. Guenneau, S., Petiteau, D., Zerrad, M., Amra, C., Puvirajesinghe, T.: Transformed Fourier and Fick equations for the control of heat and mass diffusion. AIP Adv. 5, 053404 (2015)

    Article  ADS  Google Scholar 

  38. Dai, G.L., Shang, J., Huang, J.P.: Theory of transformation thermal convection for creeping flow in porous media: cloaking, concentrating, and camouflage. Phys. Rev. E 97, 022129 (2018)

    Article  ADS  Google Scholar 

  39. Dai, G.L., Huang, J.P.: A transient regime for transforming thermal convection: cloaking, concentrating and rotating creeping flow and heat flux. J. Appl. Phys. 124, 235103 (2018)

    Article  ADS  Google Scholar 

  40. Raman, A.P., Anoma, M.A., Zhu, L.X., Rephaeli, E., Fan, S.H.: Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540–544 (2014)

    Article  ADS  Google Scholar 

  41. Shi, N.N., Tsai, C.C., Camino, F., Bernard, G.D., Yu, N.F., Wehner, R.: Keeping cool: enhanced optical reflection and radiative heat dissipation in Saharan silver ants. Science 349, 298–301 (2015)

    Article  ADS  Google Scholar 

  42. Zhai, Y., Ma, Y.G., David, S.N., Zhao, D.L., Lou, R.N., Tan, G., Yang, R.G., Yin, X.B.: Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355, 1062–1066 (2017)

    Article  ADS  Google Scholar 

  43. Xu, L.J., Huang, J.P.: Metamaterials for manipulating thermal radiation: transparency, cloak, and expander. Phys. Rev. Appl. 12, 044048 (2019)

    Article  ADS  Google Scholar 

  44. Roman, Jr., C.T., Coutu, R.A., Starman, L.A.: Thermal management and metamaterials. In: MEMS and Nanotechnology (The Society for Experimental Mechanics, Inc., edited by T. Proulx), vol. 2, pp. 107–113 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Ping Huang .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, JP. (2020). Introduction. In: Theoretical Thermotics. Springer, Singapore. https://doi.org/10.1007/978-981-15-2301-4_1

Download citation

Publish with us

Policies and ethics