Skip to main content

On the Parameter Estimation in the Schwartz-Smith’s Two-Factor Model

  • Conference paper
  • First Online:
Statistics and Data Science (RSSDS 2019)

Abstract

The two unobservable state variables representing the short and long term factors introduced by Schwartz and Smith in [16] for risk-neutral pricing of futures contracts are modelled as two correlated Ornstein-Uhlenbeck processes. The Kalman Filter (KF) method has been implemented to estimate the “short” and “long” term factors jointly with unknown model parameters. The parameter identification problem arising within the likelihood function in the KF has been addressed by introducing an additional constraint. The obtained model parameter estimates are the Maximum Likelihood Estimators (MLEs) evaluated within the KF. Consistency of the MLEs is studied. The methodology has been tested on simulated data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ames, M., Bagnarosa, G., Matsui, T., Peters, G., Shevchenko, P.V.: Which riskfactors drive oil futures price curves? Available at SSRN 2840730 (2016)

    Google Scholar 

  2. Binkowski, K., Shevchenko, P., Kordzakhia, N.: Modelling of commodity prices. CSIRO technical report (2009)

    Google Scholar 

  3. Black, F.: The pricing of commodity contracts. J. Financ. Econ. 3, 167–179 (1976)

    Article  Google Scholar 

  4. Cheng, B., Nikitopoulos, C.S., Schlögl, E.: Pricing of long-dated commodity derivatives: do stochastic interest rates matter? J. Bank. Finance 95, 148–166 (2018)

    Article  Google Scholar 

  5. Cortazar, G., Millard, C., Ortega, H., Schwartz, E.S.: Commodity price forecasts, futures prices and pricing models (2016). http://www.nber.org/papers/w22991.pdf

  6. Ewald, C.O., Zhang, A., Zong, Z.: On the calibration of the Schwartz two-factor model to WTI crude oil options and the extended Kalman filter. Ann. Oper. Res. 282, 1–12 (2018)

    MathSciNet  Google Scholar 

  7. Favetto, B., Samson, A.: Parameter estimation for a bidimensional partially observed Ornstein-Uhlenbeck process with biological application. Scand. J. Stat. 37(2), 200–220 (2010)

    Article  MathSciNet  Google Scholar 

  8. Gibson, R., Schwartz, E.S.: Stochastic convenience yield and the pricing of oil contingent claims. J. Finance 45, 959–976 (1990)

    Article  Google Scholar 

  9. Gilbert, P.: Brief user’s guide: dynamic systems estimation (DSE). Available in the file doc/DSE-guide. pdf distributed together with the R bundle DSE (2005). http://cran.r-project.org

  10. Harvey, A.C.: Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  11. Helske, J.: KFAS: exponential family state space models in R. arXiv preprint arXiv:1612.01907 (2016)

  12. Hull, J.C.: Options, Futures, and Other Derivatives, 8th edn. Prentice Hall (2012)

    Google Scholar 

  13. Kutoyants, Y.A.: On parameter estimation of the hidden Ornstein-Uhlenbeck process. J. Multivar. Anal. 169, 248–263 (2019)

    Article  MathSciNet  Google Scholar 

  14. Ornstein, L.S., Uhlenbeck, G.E.: On the theory of the Brownian motion. Phys. Rev. 36(5), 823 (1930)

    Article  Google Scholar 

  15. Peters, G., Briers, M., Shevchenko, P., Doucet, A.: Calibration and filtering for multi factor commodity models with seasonality: incorporating panel data from futures contracts. Methodol. Comput. Appl. Probab. 15, 841–874 (2013)

    Article  MathSciNet  Google Scholar 

  16. Schwartz, E., Smith, J.E.: Short-term variations and long-term dynamics in commodity prices. Manag. Sci. 46(7), 893–911 (2000)

    Article  Google Scholar 

  17. Schwartz, E.S.: The stochastic behavior of commodity prices: implications for valuation and hedging. J. Finance 52(3), 923–973 (1997)

    Article  Google Scholar 

  18. Shumway, R.H., Stoffer, D.S.: Time Series Analysis and Its Applications: With R Examples. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-52452-8

    Book  MATH  Google Scholar 

  19. Tusell, F.: Kalman filtering in R. J. Stat. Softw. 39, 1–27 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peilun He .

Editor information

Editors and Affiliations

A Derivations of (1) and (2)

A Derivations of (1) and (2)

In Sect. 2.1, we define the components of a bivariate Ornstein-Uhlenbeck process as

$$\begin{aligned} d\chi _{t} = -\kappa \chi _{t}dt + \sigma _{\chi }dZ_{t}^{\chi } \end{aligned}$$
(8)
$$\begin{aligned} d\xi _{t} = (\mu _{\xi } - \gamma \xi _{t})dt + \sigma _{\xi }dZ_{t}^{\xi }, \end{aligned}$$
(9)

where \(dZ_t^{\chi }, dZ_t^{\xi } \sim N(0, \sqrt{\varDelta t})\) are correlated standard Brownian motions. Here we show how to derive (1) and (2). Firstly, from (8),

$$\begin{aligned} \varDelta \chi _t = -\kappa \chi _t \varDelta t + \sigma _{\chi } \sqrt{\varDelta t} \epsilon _{\chi }. \end{aligned}$$

Therefore,

$$\begin{aligned} \chi _{t+1} = (1 - \kappa \varDelta t) \chi _t + \sigma _{\chi } \sqrt{\varDelta t} \epsilon _{\chi }. \end{aligned}$$
(10)

Similarly, from (9), we get

$$\begin{aligned} \xi _{t+1} = (1 - \gamma \varDelta t) \xi _t + \mu _{\xi }\varDelta t + \sigma _{\xi } \sqrt{\varDelta t} \epsilon _{\xi }, \end{aligned}$$
(11)

where \(\epsilon _{\chi }, \epsilon _{\xi } \sim N(0,1)\). Let \(Corr(\epsilon _{\chi }, \epsilon _{\xi }) = \rho \) and \(w = \left( \begin{matrix} \sigma _{\chi } \sqrt{\varDelta t} \epsilon _{\chi } \\ \sigma _{\xi } \sqrt{\varDelta t} \epsilon _{\xi }\end{matrix} \right) \), then

$$\begin{aligned} W=Var(w) = \left( \begin{matrix} \sigma _{\chi }^2 \varDelta t &{} \rho \sigma _{\chi } \sigma _{\xi } \varDelta t \\ \rho \sigma _{\chi } \sigma _{\xi } \varDelta t &{} \sigma _{\xi }^2 \varDelta t \end{matrix} \right) . \end{aligned}$$
(12)

Let \(X_t = \left( \begin{matrix} \chi _t \\ \xi _t \end{matrix} \right) \), \(c = \left( \begin{matrix} 0 \\ \mu _{\xi }\varDelta t \end{matrix} \right) \) and \(G = \left( \begin{matrix} 1 - \kappa \varDelta t &{} 0 \\ 0 &{} 1 - \gamma \varDelta t \end{matrix} \right) \). Then from (10) and (11) we get

$$\begin{aligned} X_{t+1} = c + GX_t + w_{t+1}. \end{aligned}$$

Let \(\phi = 1 - \kappa \varDelta t\), \(\psi = 1 - \gamma \varDelta t\). Then

$$E(X_t) = \left( \begin{matrix} (1-\kappa \varDelta t) \chi _{t-1} \\ (1 - \gamma \varDelta t) \xi _{t-1} + \mu _{\xi } \varDelta t \end{matrix} \right) $$
$$ = \left( \begin{matrix} (1-\kappa \varDelta t)^n \chi _0 \\ (1 - \gamma \varDelta t)^n \xi _0 + (1-\gamma \varDelta t)^{n-1} \mu _{\xi } \varDelta t + ... + (1-\gamma \varDelta t)^0 \mu _\xi \varDelta t \end{matrix} \right) $$
$$ = \left( \begin{matrix} \phi ^n \chi _0 \\ \psi ^n \xi _0 + \mu _{\xi } \varDelta t \frac{1-(1-\gamma \varDelta t)^n}{\gamma \varDelta t} \end{matrix} \right) $$
$$\begin{aligned} = \left( \begin{matrix} \phi ^n \chi _0 \\ \psi ^n \xi _0 + \frac{\mu _{\xi }}{\gamma }(1-\psi ^n) \end{matrix} \right) , \end{aligned}$$
(13)

and

$$Var(X_t) = G\cdot Var(X_{t-1}) \cdot G' + W = G^{n}Var(X_0)(G')^{n} + G^{n-1}W(G')^{n-1} + ... + G^0W(G')^0.$$

If we assume \(Var(X_0) = 0\), we can get

$$Var(X_t) = G^{n-1}W(G')^{n-1} + ... + G^0W(G')^0$$
$$= \left( \begin{matrix} \sigma _{\chi }^2 \varDelta t \sum \nolimits _{i=0}^{n-1}\phi ^{2i} &{} \rho \sigma _{\chi } \sigma _{\xi } \varDelta t \sum \nolimits _{i=0}^{n-1}(\phi \psi )^{i} \\ \rho \sigma _{\chi } \sigma _{\xi } \varDelta t \sum \nolimits _{i=0}^{n-1}(\phi \psi )^{i} &{} \sigma _{\xi }^2 \varDelta t \sum \nolimits _{i=0}^{n-1}\psi ^{2i} \end{matrix} \right) $$
$$\begin{aligned} =\left( \begin{matrix} \sigma _{\chi }^2 \varDelta t \frac{1-\phi ^{2n}}{1-\phi ^2} &{} \rho \sigma _{\chi } \sigma _{\xi } \varDelta t \frac{1-(\phi \psi )^n}{1-\phi \psi } \\ \rho \sigma _{\chi } \sigma _{\xi } \varDelta t \frac{1-(\phi \psi )^n}{1-\phi \psi } &{} \sigma _{\xi }^2 \varDelta t \frac{1-\psi ^{2n}}{1-\psi ^2} \end{matrix} \right) . \end{aligned}$$
(14)

When \(n \rightarrow \infty \), \(\varDelta t = t/n \rightarrow 0\), \(\varDelta t^2 = 0\), then

$$\phi ^n = (1-\frac{\kappa t}{n})^n \rightarrow e^{-\kappa t}, $$
$$\psi ^n = (1-\frac{\gamma t}{n})^n \rightarrow e^{-\gamma t}, $$
$$(\phi \psi ) ^ n = (1-(\kappa + \gamma ) t/n)^n \rightarrow e^{-(\kappa + \gamma ) t}, $$
$$ 1-\phi ^2 = 2\kappa \varDelta t, 1-\psi ^2 = 2\gamma \varDelta t, 1 - \phi \psi = (\kappa + \gamma )\varDelta t. $$

From Eqs. (13) and (14), we have

$$\begin{aligned} E(X_t) = \left( \begin{matrix} e^{-\kappa t} \chi _0 \\ e^{-\gamma t} \xi _0 + \frac{\mu _{\xi }}{\gamma }(1 - e^{-\gamma t}) \end{matrix} \right) \end{aligned}$$

and

$$\begin{aligned} Var(X_t) = \left( \begin{array}{cc} \frac{\sigma _{\chi }^2}{2\kappa }(1-e^{-2\kappa t}) &{} \frac{\rho \sigma _{\chi } \sigma _{\xi }}{\kappa + \gamma } (1-e^{-(\kappa + \gamma ) t}) \\ \frac{\rho \sigma _{\chi } \sigma _{\xi }}{\kappa + \gamma } (1-e^{-(\kappa + \gamma ) t}) &{} \frac{\sigma _{\xi }^2}{2\gamma }(1-e^{-2\gamma t}) \end{array} \right) , \end{aligned}$$

in the linearised form \(Var(X_{{\varDelta } t})\approx W\) from (12).

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Binkowski, K., He, P., Kordzakhia, N., Shevchenko, P. (2019). On the Parameter Estimation in the Schwartz-Smith’s Two-Factor Model. In: Nguyen, H. (eds) Statistics and Data Science. RSSDS 2019. Communications in Computer and Information Science, vol 1150. Springer, Singapore. https://doi.org/10.1007/978-981-15-1960-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1960-4_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1959-8

  • Online ISBN: 978-981-15-1960-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics