Skip to main content

Abstract

The infections and pathogenesis are continuously evolving processes to avoid the effects of hazardous situations and antibiotic susceptibility. In this process, the microbes could percept and conscientiousness towards its circumstances by their cellular and physiological mechanisms. All the bacterial populations can maintain phenotypes and genotype monitors in their competitive environment. To maintain all these community behaviors, the bacterial population utilize various natural signaling pathways under specific microbial language. The bacterial population was well regulated their extracellular or intercellular cooperative communication mechanisms known as quorum sensing. The quorum-sensing (QS) mechanism responds through small diffusible signal molecules; these signaling molecules were synthesized and secreted into intercellular or extracellular microenvironment at different phage of bacterial growth. However, we focus on this chapter microbial signal communications and also QS mechanisms in biofilm formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersson RA, Eriksson AR, Heikinheimo R, Mäe A, Pirhonen M, Kõiv V, Hyytiainen H, Tuikkala A, Palva ET (2000) Quorum sensing in the plant pathogen Erwinia carotovora subsp. carotovora: the role of expREcc. Mol Plant-Microbe Interact 13(4):384–393

    Article  CAS  PubMed  Google Scholar 

  • Antunes LCM, Ferreira RB, Buckner MM, Finlay BB (2010) Quorum sensing in bacterial virulence. Microbiology 156(8):2271–2282

    Google Scholar 

  • Atkinson S, Williams P (2009) Quorum sensing and social networking in the microbial world. J RSoc Interface 6(40):959–978

    Article  CAS  Google Scholar 

  • Atkinson S, Throup JP, Stewart GS, Williams P (1999) A hierarchical quorum-sensing system in Yersinia pseudotuberculosis is involved in the regulation of motility and clumping. Mol Microbiol 33(6):1267–1277

    Google Scholar 

  • Atkinson S, Chang CY, Patrick HL, Buckley CM, Wang Y, Sockett RE, Camara M, Williams P (2008) Functional interplay between the Yersinia pseudotuberculosis YpsRI and YtbRI quorum sensing systems modulates swimming motility by controlling expression of flhDC and fliA. Mol Microbiol 69(1):137–151

    Google Scholar 

  • Bainton NJ, Stead P, Chhabra SR, Bycroft BW, Salmond GPC, Stewart GS, Williams P (1992) N-(3-oxohexanoyl)-L-homoserine lactone regulates carbapenem antibiotic production in Erwinia carotovora. Biochem J 288(3):997–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldassarri L, Cecchini R, Bertuccini L, Ammendolia MG, Iosi F, Arciola CR, Montanaro L, di Rosa R, Gherardi G, Dicuonzo G, Orefici G, Creti R (2001) Enterococcus spp. produces slime and survives in rat peritoneal macrophages. Med Microbiol Immunol 190(3):113–120

    Google Scholar 

  • Bartels FW, McIntosh M, Fuhrmann A, Metzendorf C, Plattner P, Sewald N, Anselmetti D, Ros R, Becker A (2007) Effector-stimulated single molecule protein-DNA interactions of a quorum-sensing system in Sinorhizobium meliloti. Biophys J 92(12):4391–4400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bassler BL, Losick R (2006) Bacterially speaking. Cell 125(2):237–246

    Article  CAS  PubMed  Google Scholar 

  • Bjarnsholt T (2013) The role of bacterial biofilms in chronic infections. APMIS 121:1–58

    Article  CAS  Google Scholar 

  • Bodelón G, Montes-García V, López-Puente V, Hill EH, Hamon C, Sanz-Ortiz MN et al (2016) Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering. Nat Mater 15(11):1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brackman G, Breyne K, De Rycke R et al (2016) The quorum sensing inhibitor hamamelitannin increases antibiotic susceptibility of Staphylococcus aureus biofilms by affecting peptidoglycan biosynthesis and eDNA release. Sci Rep 6:20321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burmolle M, Thomsen TR, Fazli M et al (2010) Biofilms in chronic infections–a matter of opportunity–monospecies biofilms in multispecies infections. FEMS Immunol Med Microbiol 59(3):324–336

    Article  CAS  PubMed  Google Scholar 

  • Burton EO, Read HW, Pellitteri MC, Hickey WJ (2005) Identification of acyl-homoserine lactone signal molecules produced by Nitrosomonas europaea strain Schmidt. Appl Environ Microbiol 71(8):4906–4909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapon-Hervé V, Akrim M, Latifi A, Williams P, Lazdunski A, Bally M (1997) Regulation of the xcp secretion pathway by multiple quorum-sensing modulons in Pseudomonas aeruginosa. Mol Microbiol 24(6):1169–1178

    Google Scholar 

  • Chatterjee A, Cui Y, Hasegawa H, Chatterjee AK (2007) PsrA, the pseudomonas sigma regulator, controls regulators of epiphytic fitness, quorum-sensing signals, and plant interactions in Pseudomonas syringae pv. tomato strain DC3000. Appl Environ Microbiol 73(11):3684–3694

    Google Scholar 

  • Chen CY, Chen SD (2000) Biofilm characteristics in biological denitrification biofilm reactors. Water Sci Technol 41(4–5):147–154

    Google Scholar 

  • Chhabra SR, Stead P, Bainton NJ, Salmond GP, Stewart GS, Williams P, Bycroft BW (1993) Autoregulation of carbapenem biosynthesis in Erwinia carotovora by analogues of N-(3-oxohexanoyl)-L-homoserine lactone. J Antibiot 46(3):441–454

    Article  CAS  Google Scholar 

  • Chhabra SR, Harty C, Hooi DS et al (2003) Synthetic analogues of the bacterial signal (quorum sensing) molecule N-(3-oxododecanoyl)-L-homoserine lactone as immune modulators. J Med Chem 46(1):97–104

    Article  CAS  PubMed  Google Scholar 

  • Choudhary S, Schmidt-Dannert C (2010) Applications of quorum sensing in biotechnology. Appl Microbiol Biotechnol 86(5):1267–1279

    Google Scholar 

  • ClaessonC (2010) Staphylococci and Enterococci: studies on activity of antimicrobial agents and detection of genes involved in biofilm formation. Doctoral dissertation, Linköping University Electronic Press

    Google Scholar 

  • Demirci A, Pometto AL III, Ho KG (1997) Ethanol production by Saccharomyces cerevisiae in biofilm reactors. J Ind Microbiol Biotechnol 19(4):299–304

    Google Scholar 

  • Dietrich LE, Okegbe C, Price-Whelan A, Sakhtah H, Hunter RC, Newman DK (2013) Bacterial community morphogenesis is intimately linked to the intracellular redox state. J Bacteriol 195(7):1371–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diggle SP, Gardner A, West SA, Griffin AS (2007) Evolutionary theory of bacterial quorum sensing: when is a signal not a signal? Philos Trans RSoc B BiolSci 362(1483):1241–1249

    Article  CAS  Google Scholar 

  • Douglas L (2003) Candida biofilms and their role in infection. Trends Microbiol 11(1):30–36

    Article  CAS  PubMed  Google Scholar 

  • Dulla G, Lindow SE (2008) Quorum size of Pseudomonas syringae is small and dictated by water availability on the leaf surface. Proc Nat AcadSci 105(8):3082–3087

    Article  Google Scholar 

  • Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S (2016) Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14(9):563

    Google Scholar 

  • Fuqua C, Winans SC (1996) Conserved cis-acting promoter elements are required for density-dependent transcription of Agrobacterium tumefaciens conjugal transfer genes. J Bacteriol 178(2):435–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallio M, Sturgill G, Rather P, Kylsten P (2002) A conserved mechanism for extracellular signaling in eukaryotes and prokaryotes. Proc Nat Acad Sci 99(19):12208–12213

    Google Scholar 

  • Gao M, Song H, Zheng H et al (2016) Culture of low density E. coli cells in alginate–chitosan microcapsules facilitates stress resistance by up-regulating luxS/AI-2 system. Carbohydr Polym 141:160–165

    Google Scholar 

  • Gray KM, Pearson JP, Downie JA, Boboye BE, Greenberg EP (1996) Cell-to-cell signaling in the symbiotic nitrogen-fixing bacterium Rhizobium leguminosarum: autoinduction of a stationary phase and rhizosphere-expressed genes. J Bacteriol 178(2):372–376

    Google Scholar 

  • Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. NatRev Microbiol 2(2):95

    CAS  Google Scholar 

  • Hashem YA, Amin HM, Essam TM, Yassin AS, Aziz RK (2017) Biofilm formation in Enterococci: genotype-phenotype correlations and inhibition by vancomycin. Sci Rep 7(1):5733

    Google Scholar 

  • Hödl I, Mari L, Bertuzzo E, Suweis S, Besemer K, Rinaldo A, Battin TJ (2014) Biophysical controls on cluster dynamics and architectural differentiation of microbial biofilms in contrasting flow environments. Environ Microbiol 16(3):802–812

    Google Scholar 

  • Hou HM, Zhu YL, Wang JY, Jiang F, Qu WY, Zhang GL, Hao HS (2017) Characteristics of N-acylhomoserine lactones produced by Hafnia alvei H4 isolated from spoiled instant sea cucumber. Sensors 17(4):772

    Article  CAS  PubMed Central  Google Scholar 

  • Jamal M, Ahmad W, Andleeb S et al (2018) Bacterial biofilm and associated infections. J Chin Med Assoc 81(1):7–11

    Google Scholar 

  • Janissen R, Murillo DM, Niza B, Sahoo PK, Nobrega MM, Cesar CL et al (2015) Spatiotemporal distribution of different extracellular polymeric substances and filamentation mediate Xylella fastidiosa adhesion and biofilm formation. Sci Rep 5:9856

    Google Scholar 

  • Jayaraman A, Wood TK (2008) Bacterial quorum sensing: signals, circuits, and implications for biofilms and disease. Annu Rev Biomed Eng 10:145–167

    Article  CAS  PubMed  Google Scholar 

  • Kalia VC, Patel SK, Kang YC, Lee JK (2018) Quorum sensing inhibitors as antipathogens: biotechnological applications. Biotechnol Adv 37(1):68–90

    Google Scholar 

  • Khan SR, Mavrodi DV, Jog GJ, Suga H, Thomashow LS, Farrand SK (2005) Activation of the phz operon of Pseudomonas fluorescens 2-79 requires the LuxR homolog PhzR, N-(3-OH-hexanoyl)-L-homoserine lactone produced by the LuxI homolog PhzI, and a cis-acting phz box. J Bacteriol 187(18):6517–6527

    Google Scholar 

  • Kim W, Tengra FK, Young Z, Shong J, Marchand N, Chan HK et al (2013) Spaceflight promotes biofilm formation by Pseudomonas aeruginosa. PLoS One 8(4):e62437

    Google Scholar 

  • Kirke DF, Swift S, Lynch MJ, Williams P (2004) The Aeromonas hydrophila LuxR homologue AhyR regulates the N-acyl homoserine lactone synthase, AhyI positively and negatively in a growth phase-dependent manner. FEMS Microbiol Lett 241(1):109–117

    Google Scholar 

  • Kostakioti M, Hadjifrangiskou M, Hultgren SJ (2013) Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb Perspect Med 3(4):a010306

    Google Scholar 

  • Kuo A, Callahan SM, Dunlap PV (1996) Modulation of luminescence operon expression by N-octanoyl-L-homoserine lactone in ainS mutants of Vibrio fischeri. J Bacteriol 178(4):971–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laue BE, Jiang Y, Chhabra SR et al (2000) The biocontrol strain Pseudomonas fluorescens F113 produces the Rhizobium small bacteriocin, N-(3-hydroxy-7-cis-tetradecenoyl) homoserine lactone, via HdtS, a putative novel N-acylhomoserine lactone synthase. Microbiology 146(10):2469–2480

    Google Scholar 

  • Lawrence RN, Dunn WR, Bycroft B et al (1999) The Pseudomonas aeruginosa quorum-sensing signal molecule, N-(3-oxododecanoyl)-l-homoserine lactone, inhibits porcine arterial smooth muscle contraction. Br J Pharmacol 128(4):845–848

    Google Scholar 

  • LembreP, LorentzC, diMartinoP (2012) Exopolysaccharides of the biofilm matrix: a complex biophysical world. In: The complex world of polysaccharides. pp 371–392

    Google Scholar 

  • Lenz DH, Miller MB, Zhu J, Kulkarni RV, Bassler BL (2005) CsrA and three redundant small RNAs regulate quorum sensing in Vibrio cholerae. Mol Microbiol 58(4):1186–1202

    Google Scholar 

  • Lerat E, Moran NA (2004) Erratum: The evolutionary history of quorum-sensing systems in bacteria (Molecular Biology and Evolution (2004) 21 (903–913)). Mol Biol Evol 21(8):1612

    CAS  Google Scholar 

  • Malott RJ, Sokol PA (2007) Expression of the bviIR and cepIR quorum-sensing systems of Burkholderia vietnamiensis. J Bacteriol 189(8):3006–3016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marketon MM, Glenn SA, Eberhard A, González JE (2003) Quorum sensing controls exopolysaccharide production in Sinorhizobium meliloti. J Bacteriol 185(1):325–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marx V (2014) Cell communication: stop the microbial chatter. Nature 511:493–497

    Article  CAS  PubMed  Google Scholar 

  • McClean KH, Winson MK, Fish L et al (1997) Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143(12):3703–3711

    Google Scholar 

  • McDougald D, Rice SA, Barraud N, Steinberg PD, Kjelleberg S (2012) Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat Rev Microbiol 10(1):39

    Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Ann Rev Microbiol 55(1):165–199

    Article  CAS  Google Scholar 

  • Milton DL, Hardman A, Camara M, Chhabra SR, Bycroft BW, Stewart GS, Williams P (1997) Quorum sensing in Vibrio anguillarum: characterization of the vanI/vanR locus and identification of the autoinducer N-(3-oxodecanoyl)-L-homoserine lactone. J Bacteriol 179(9):3004–3012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milton DL, Chalker VJ, Kirke D, Hardman A, Cámara M, Williams P (2001) The LuxM homologue VanM from Vibrio anguillarum directs the synthesis of N-(3-Hydroxyhexanoyl) homoserine lactone and N-Hexanoyl homoserine lactone. J Bacteriol 183(12):3537–3547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minogue TD, Trebra MWV, Bernhard F, Bodman SBV (2002) The autoregulatory role of EsaR, a quorum-sensing regulator in Pantoea stewartii ssp. stewartii: evidence for a repressor function. Mol Microbiol 44(6):1625–1635

    Google Scholar 

  • Morohoshi T, Shiono T, Takidouchi K, Kato M, Kato N, Kato J, Ikeda T (2007) Inhibition of quorum sensing in Serratia marcescens AS-1 by synthetic analogs of N-acylhomoserine lactone. Appl Environ Microbiol 73(20):6339–6344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morohoshi T, Kato M, Fukamachi K, Kato N, Ikeda T (2008) N-acylhomoserine lactone regulates violacein production in Chromobacterium violaceum type strain ATCC 12472. FEMS Microbiol Lett 279(1):124–130

    Google Scholar 

  • Nadell CD, Xavier JB, Levin SA, Foster KR (2008) The evolution of quorum sensing in bacterial biofilms. PLoS Biol 6(1):e14

    Google Scholar 

  • Nasser W, Bouillant ML, Salmond G, Reverchon S (1998) Characterization of the Erwinia chrysanthemi expI–expR locus directing the synthesis of two N-acyl-homoserine lactone signal molecules. Mol Microbiol 29(6):1391–1405

    Google Scholar 

  • NomuraN, MiyazakiH (2009) US Patent No. 7537906. US Patent and Trademark Office, Washington

    Google Scholar 

  • Ortori CA, Dubern JF, Chhabra SR, Cámara M, Hardie K, Williams P, Barrett DA (2011) Simultaneous quantitative profiling of N-acyl-L-homoserine lactone and 2-alkyl-4 (1H)-quinolone families of quorum-sensing signaling molecules using LC-MS/MS. Anal Bioanal Chem 399(2):839–850

    Google Scholar 

  • O’Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Ann Rev Microbiol 54(1):49–79

    Article  Google Scholar 

  • Pillai SK, Sakoulas G, Eliopoulos GM, Moellering RC Jr, Murray BE, Inouye RT (2004) Effects of glucose on fsr-mediated biofilm formation in Enterococcus faecalis. J Infect Dis 190(5):967–970

    Article  CAS  PubMed  Google Scholar 

  • Puskas A, Greenberg EP, Kaplan S, Schaefer AL (1997) A quorum-sensing system in the free-living photosynthetic bacterium Rhodobacter sphaeroides. J Bacteriol 179(23):7530–7537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quiñones B, Pujol CJ, Lindow SE (2004) Regulation of AHL production and its contribution to epiphytic fitness in Pseudomonas syringae. Mol Plant Microbe Interact 17(5):521–531

    Google Scholar 

  • Rabin N, Zheng Y, Opoku-Temeng C, Du Y, Bonsu E, Sintim HO (2015) Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med Chem 7(4):493–512

    Article  CAS  PubMed  Google Scholar 

  • Ramadhan AA, Hegedus E (2005) Biofilm formation and esp gene carriage in enterococci. J Clin Pathol 58(7):685–686

    Google Scholar 

  • Rasmussen TB, Manefield M, Andersen JB, Eberl L, Anthoni U, Christophersen C et al (2000) How Delisea pulchra furanones affect quorum sensing and swarming motility in Serratia liquefaciens MG1. Microbiology 146(12):3237–3244

    Google Scholar 

  • Reimmann C, Beyeler M, Latifi A, Winteler H, Foglino M, Lazdunski A, Haas D (1997) The global activator GacA of Pseudomonas aeruginosa PAO positively controls the production of the autoinducer N-butyryl-homoserine lactone and the formation of the virulence factors pyocyanin, cyanide, and lipase. Mol Microbiol 24(2):309–319

    Google Scholar 

  • RuparellA (2012) Interplay between quorum sensing and metabolism in Pseudomonas aeruginosa. Doctoral dissertation, University of Nottingham

    Google Scholar 

  • Ruysbergh E, Stevens CV, de Kimpe N, Mangelinckx S (2016) Synthesis and analysis of stable isotope-labelled N-acyl homoserine lactones. RSC Adv 6(77):73717–73730

    Article  CAS  Google Scholar 

  • Schuster JJ, Markx GH (2013) Biofilm architecture. In: Productive biofilms. Springer, Cham, pp 77–96

    Google Scholar 

  • Schwartz K, Ganesan M, Payne DE, Solomon MJ, Boles BR (2016) Extracellular DNA facilitates the formation of functional amyloids in Staphylococcus aureus biofilms. Mol Microbiol 99(1):123–134

    Google Scholar 

  • Schwarzer C, Fu Z, Morita T, Whitt AG, Neely AM, Li C, Machen TE (2015) Paraoxonase 2 serves a proapopotic function in mouse and human cells in response to the Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl)-homoserine lactone. J Biol Chem 290(11):7247–7258

    Google Scholar 

  • Seed PC, Passador L, Iglewski BH (1995) Activation of the Pseudomonas aeruginosa lasI gene by LasR and the Pseudomonas autoinducer PAI: an autoinduction regulatory hierarchy. J Bacteriol 177(3):654–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw PD, Ping G, Daly SL, Cha C, Cronan JE, Rinehart KL, Farrand SK (1997) Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. Proc Nat Acad Sci 94(12):6036–6041

    Google Scholar 

  • Shrout JD, Parsek MR (2006) Quorum sensing: coordinating group behavior through intercellular signals. In: Molecular paradigms of infectious disease. Springer, Boston, pp 404–437

    Chapter  Google Scholar 

  • Sjöblom S, Brader G, Koch G, Palva ET (2006) Cooperation of two distinct ExpR regulators controls quorum sensing specificity and virulence in the plant pathogen Erwinia carotovora. Mol Microbiol 60(6):1474-1489

    Google Scholar 

  • Stauff DL, Bassler BL (2011) Quorum sensing in Chromobacterium violaceum: DNA recognition and gene regulation by the CviR receptor. J Bacteriol 193(15):3871–3878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subramoni S, Sokol PA (2012) Quorum sensing systems influence Burkholderia cenocepacia virulence. Future Microbiol 7(12):1373–1387

    Article  CAS  PubMed  Google Scholar 

  • Sureshchandra B (2010) Quorum sensing-cell to cell communication in bacteria. J Endod 22(2):97–101

    Google Scholar 

  • Suzuki K, Babitzke P, Kushner SR, Romeo T (2006) Identification of a novel regulatory protein (CsrD) that targets the global regulatory RNAs CsrB and CsrC for degradation by RNase E. Genes Dev 20(18):2605–2617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swift S, Karlyshev AV, Fish L, Durant EL, Winson MK, Chhabra SR, Williams P, Macintyre S, Stewart GS (1997) Quorum sensing in Aeromonas hydrophila and Aeromonas salmonicida: identification of the LuxRI homologs AhyRI and AsaRI and their cognate N-acylhomoserine lactone signal molecules. J Bacteriol 179(17):5271–5281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swift S, Lynch MJ, Fish L, Kirke DF, Tomás JM, Stewart GS, Williams P (1999) Quorum sensing-dependent regulation and blockade of exoprotease production in Aeromonas hydrophila. Infect Immun 67(10):5192–5199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Telford G, Wheeler D, Williams P, Tomkins PT, Appleby P, Sewell H, Stewart GS, Bycroft BW, Pritchard DI (1998) The Pseudomonas aeruginosa quorum-sensing signal molecule n-(3-oxododecanoyl)-L-homoserine lactone has immunomodulatory activity. Infect Immun 66(1):36–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai CS, Winans SC (2011) The quorum-hindered transcription factor YenR of Yersinia enterocolitica inhibits pheromone production and promotes motility via a small non-coding RNA. Mol Microbiol 80(2):556–571

    Google Scholar 

  • Ulrich RL, Hines HB, Parthasarathy N, Jeddeloh JA (2004) Mutational analysis and biochemical characterization of the Burkholderia thailandensis DW503 quorum-sensing network. J Bacteriol 186(13):4350–4360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umesha S, Shivakumar J (2013) Bacterial quorum sensing and its application in biotechnology. Int J Pharm Bio Sci 4:850–861

    Google Scholar 

  • Visick KL, Fuqua C (2005) Decoding microbial chatter: cell-cell communication in bacteria. J Bacteriol 187(16):5507–5519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Bodman SB, Farrand SK (1995) Capsular polysaccharide biosynthesis and pathogenicity in Erwinia stewartii require induction by an N-acylhomoserine lactone autoinducer. J Bacteriol 177(17):5000–5008

    Article  Google Scholar 

  • Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS (2002) Extracellular DNA required for bacterial biofilm formation. Science 295(5559):1487

    Article  CAS  PubMed  Google Scholar 

  • Williams P, Camara M, Hardman A, Swift S, Milton D, Hope VJ, Winzer K, Middleton B, Pritchard DI, Bycroft BW (2000) Quorum sensing and the population-dependent control of virulence. Philos Trans R Soc Lond Ser B Biol Sci 355(1397):667–680

    Google Scholar 

  • Winson MK, Camara M, Latifi A, Foglino M, Chhabra SR, Daykin M, Bally M, Chapon V, Salmond GP, Bycroft BW (1995) Multiple N-acyl-L-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa. Proc Nat Acad Sci 92(20):9427–9431

    Google Scholar 

  • Xavier KB, Bassler BL (2005) Interference with AI-2-mediated bacterial cell–cell communication. Nature 437(7059):750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zavahir JS, Seneviratne G (2007) Potential of developed microbial biofilms in generating bioactive compounds. Res J Microbiol 2(4):397–401

    Article  CAS  Google Scholar 

  • Zhang C, Li B, Tang JY, Wang XL, Qin Z, Feng XQ (2017) Experimental and theoretical studies on the morphogenesis of bacterial biofilms. Soft Matter 13(40):7389–7397

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank to DST-SERB-EMEQ-051/2014, Govt. of India for financial assistance. ER thanks to SERB for JRF fellowship and the research facilities supported by CU Kerala.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjith Kumavath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eswara Rao, T., Kumavath, R. (2020). Role of Quorum Sensing in Microbial Infections and Biofilm Formation. In: Siddhardha, B., Dyavaiah, M., Syed, A. (eds) Model Organisms for Microbial Pathogenesis, Biofilm Formation and Antimicrobial Drug Discovery. Springer, Singapore. https://doi.org/10.1007/978-981-15-1695-5_5

Download citation

Publish with us

Policies and ethics