Skip to main content

Wastewater Treatment Techniques for Sustainable Aquaculture

  • Chapter
  • First Online:
Waste Management as Economic Industry Towards Circular Economy

Abstract

To support the rapidly growing human population, food production industries such as aquaculture needs horizontal as well as vertical expansion. The rapid growth of global aquaculture industry cannot be overemphasized because environmental and economic limitations hamper this growth. Intensification of aquaculture activities generates excess amounts of organic pollutants that are likely to cause acute toxic effects and long-run environmental risks. Hence, the aquaculture industry has become an axis for criticism from environmental groups because of an apparent negative effect on the environment by the release of wastewater. The routine method of dealing with this problem is the continuous replacement of the pond water through water exchange using clean water. Thus, aquaculture requires not only the supply of clean water but also the release of pollutant-free water for the protection of aquatic environment and reuse of water sources. The main contaminants of wastewater effluent are suspended solids, nitrogenous wastes and phosphates. Therefore, it is obvious that appropriate wastewater treatment processes are needed for sustainable aquaculture development. A number of physical, chemical and biological methods used in conventional wastewater treatment have been applied in aquaculture systems. This review gives an overview about possibilities of treating the wastewater in aquaculture to avoid the pollution and enabling water for reuse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad, I., Rani, A. B., Verma, A. K., & Maqsood, M. (2017). Biofloc technology: An emerging avenue in aquatic animal healthcare and nutrition. Aquaculture International, 25(3), 1215–1226.

    Article  Google Scholar 

  • Antony, S. P., & Philip, R. (2006). Bioremediation in shrimp culture systems. Naga the World Fish Center Quarterly, 29(3&4), 62–66.

    Google Scholar 

  • Arvanitoyannis, I. S., & Kassaveti, A. (2008). Fish industry waste: Treatments, environmental impacts, current and potential uses. International Journal of Food Science & Technology, 43(4), 726–745.

    Article  Google Scholar 

  • Avnimelech, Y. (1999). Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176, 227–235.

    Article  Google Scholar 

  • Avnimelech, Y. (2009). Biofloc technology. A practical guide book (p. 182). Baton Rouge: The World Aquaculture Society.

    Google Scholar 

  • Axler, R., Larsen, C., Tikkanen, C., McDonald, M., Yokom, S., & Aas, P. (1996). Water quality issues associated with aquaculture: A case study in mine pit lakes. Water Environment Research, 68(6), 995–1011.

    Article  Google Scholar 

  • Buchholz, C., Krause, G., & Buck, B. H. (2012). Seaweed and man. In Wiencke, C., & Bischof, K. (Eds.) Seaweed biology: Novel insights into ecophysiology, ecology and utilization (pp. 471–493). Heidelberg: Springer.

    Google Scholar 

  • Buck, B. H., Troell, M. F., Krause, G., Angel, D. L., Grote, B., & Chopin, T. (2018). State of the art and challenges for offshore integrated Multi-Trophic Aquaculture (IMTA). Frontiers in Marine Science, 5, 165. https://doi.org/10.3389/fmars.2018.00165.

    Article  Google Scholar 

  • Chopin, T., Buschmann, A., Halling, C., Troell, M., Kautsky, N., Neori, A., et al. (2001). Integrating seaweeds into aquaculture systems: A key towards sustainability. Journal of Phycology, 37, 975–986.

    Article  Google Scholar 

  • Chopin, T., Robinson, S. M. C., Troell, M., Neori, A., Buschmann, A., & Fang, J. G. (2008). Multitrophic integration for sustainable marine aquaculture. Encyclopedia of Ecology, 2463–2475. https://doi.org/10.1016/B978-008045405-4.00065-3.

    Chapter  Google Scholar 

  • Chopin, T., Cooper, J. A., Reid, G., Cross, S., & Moore, C. (2012). Open-water integrated multi-trophic aquaculture: Environmental biomitigation and economic diversification of fed aquaculture by extractive aquaculture. Reviews in Aquaculture, 4, 209–220.

    Article  Google Scholar 

  • Chopin, T. (2013). Aquaculture, integrated Multi-trophic (IMTA). In Christou, P., Savin, R., Costa-Pierce, B. A., Misztal, I., & Whitelaw, C. B. A. (Eds.) Sustainable food production. New York: Springer. https://doi.org/10.1007/978-1-4614-5797-8.

  • Crab, R., Avnimelech, Y., Defoirdt, T., Bossier, P., & Verstraete, W. (2007). Nitrogen removal techniques in aquaculture for a sustainable production. Aquaculture, 270(1–4), 1–14. https://doi.org/10.1016/j.aquaculture.2007.05.006.

    Article  Google Scholar 

  • Crab, R., Defoirdt, T., Bossier, P., & Verstraete, W. (2012). Biofloc technology in aquaculture: Beneficial effects and future challenges. Aquaculture, 356, 351–356.

    Article  Google Scholar 

  • Cubillo, A. M., Ferreira, J. G., Robinson, S. M. C., Pearce, C. M., Corner, R. A., & Johansen, J. (2016). Role of deposit feeders in integrated multi-trophic aquaculture—A model analysis. Aquaculture, 453, 54–66. https://doi.org/10.1016/j.aquaculture.2015.11.031.

    Article  Google Scholar 

  • Fang, J., Zhang, J., Xiao, T., Huang, D., & Liu, S. (2016). Integrated multi-trophic aquaculture (IMTA) in Sanggou Bay, China. Aquaculture Environment Interactions, 8, 201–205.

    Article  Google Scholar 

  • FAO (Food and Agriculture Organization). (2006). State of world aquaculture. FAO Fisheries Technical Paper. No. 500. Rome. http://www.fao.org/3/a-a0699e.pdf.

  • FAO (Food and Agriculture Organization). (2017). Aquaculture Newsletter, 56, 1–64. http://www.fao.org/3/a-i7171e.pdf.

  • FAO (Food and Agriculture Organization). (2018). The State of World Fisheries and Aquaculture 2018—Meeting the Sustainable Development Goals. Rome. http://www.fao.org/3/I9540EN/i9540en.pdf.

  • Gomez, S., Hurtado, C. F., Orellana, J., Valenzuela Olea, G., & Turner, A. (2018). Abarenicola pusilla (Quatrefages, 1866): A novel species for fish waste bioremediation from marine recirculating aquaculture systems. Aquaculture Research, 49(3), 1363–1367. https://doi.org/10.1111/are.13562.

    Article  Google Scholar 

  • Gutierrez-Wing, M. T., & Malone, R. F. (2006). Biological filters in aquaculture: Trends and research directions for freshwater and marine applications. Aquacultural Engeneering, 34, 163–171. https://doi.org/10.1016/j.aquaeng.2005.08.003.

    Article  Google Scholar 

  • Hargreaves, J. A. (2006). Photosynthetic suspended-growth systems in aquaculture. Aquaculture Engineering, 34, 344–363.

    Article  Google Scholar 

  • Helfrich, L. A., & Libey, G. (1991). Fish farming in Recirculating Aquaculture Systems (RAS). Virginia State Cooperative Service.

    Google Scholar 

  • Kibria, A. S. M., & Haque, M. M. (2018). Potentials of integrated multi-trophic aquaculture (IMTA) in freshwater ponds in Bangladesh. Aquaculture Reports, 11, 8–16. https://doi.org/10.1016/j.aqrep.2018.05.004.

    Article  Google Scholar 

  • Kuhn, D. D., Flick, G. J., Jr., Boardman, G. D., & Lawrence, A. L. (2010). Biofloc: Novel sustainable ingredient for shrimp feed. Global aquaculture advocate.

    Google Scholar 

  • Largo, D. B., Diola, A. G., & Marababol, M. S. (2016). Development of an integrated multi-trophic aquaculture (IMTA) system for tropical marine species in southern Cebu, Central Philippines. Aquaculture Reports, 3, 67–76.

    Article  Google Scholar 

  • Lezama-Cervantes, C., & Paniagua-Michel, J. (2010). Effects of constructed microbial mats on water quality and performance of Litopenaeus vannamei post-larvae. Aquacultural Engineering, 42(2), 75–81. https://doi.org/10.1016/j.aquaeng.2009.12.002.

    Article  Google Scholar 

  • Li, L., Ren, W., Liu, C., Dong, S., & Zhu, Y. (2018). Comparing trace element concentrations in muscle tissue of marbled eel Anguilla marmorata reared in three different aquaculture systems. Aquaculture Environment Interactions, 10, 13–20. https://doi.org/10.3354/aei00250.

    Article  Google Scholar 

  • Martan, E. (2008). Polyculture of fishes in aquaponics and recirculating aquaculture. Aquaponics Journal, 48, 28–33.

    Google Scholar 

  • Madariaga, S. T., & Marin, S. L. (2016). Sanitary and environmental conditions of aquaculture sludge. Aquaculture Research, 48, 1744–1750. https://doi.org/10.1111/are.13011.

    Article  Google Scholar 

  • Martins, C. I. M., Eding, E. H., Verdegem, M. C., Heinsbroek, L. T., Schneider, O., Blancheton, J. P., et al. (2010). New developments in recirculating aquaculture systems in Europe: A perspective on environmental sustainability. Aquacultural Engineering, 43(3), 83–93. https://doi.org/10.1016/j.aquaeng.2010.09.002.

    Article  Google Scholar 

  • Masser, M. P., Rakocy, J., & Losordo, T. M. (1999). Recirculating aquaculture tank production systems, Management of Recirculating Systems. Southern Regional Aquaculture Center. SRAC Publication No. 452.

    Google Scholar 

  • McDonough, W., & Braungart, M. (2002). Cradle to cradle: Remaking the way we make things (p. 193). New York, US: North Point Press.

    Google Scholar 

  • Neori, A., Chopin, T., Troell, M., Buschmann, A., Kraemer, G. P., Halling, C., et al. (2004). Integrated aquaculture: Rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture, 231, 361–391. https://doi.org/10.1016/j.aquaculture.2003.11.015.

    Article  Google Scholar 

  • Ridler, N., Wowchuk, M., Robinson, B., Barrington, K., Chopin, T., Robinson, S., et al. (2007). Integrated multi—Trophic aquaculture (IMTA): A potential strategic choice for farmers. Aquaculture Economics & Management, 11(1), 99–110.

    Article  Google Scholar 

  • Sohail, A. S. (2003). Wastewater treatment technology in aquaculture. World Aquaculture, 34, 3.

    Google Scholar 

  • Sharma, R., & Scheeno, T. P. (1999). Aquaculture wastes and its management. Fisheries World 22–24.

    Google Scholar 

  • Srithongouthai, S., & Tada, K. (2017). Impacts of organic waste from a yellowtail cage farm on surface sediment and bottom water in Shido Bay (The Seto Inland Sea, Japan). Aquaculture, 471, 140–145. https://doi.org/10.1016/j.aquaculture.2017.01.021.

    Article  Google Scholar 

  • Troell, M., Halling, C., Neori, A., Chopin, T., Buschmann, A. H., Kautsky, N., et al. (2003). Integrated mariculture: Asking the right questions. Aquaculture, 226(1–4), 69–90. https://doi.org/10.1016/S0044-8486(03)00469-1.

    Article  Google Scholar 

  • Turcios, A. E., & Papenbrock, J. (2014). Sustainable treatment of aquaculture effluents-what can we learn from the past for the future? Sustainability, 6(2), 836–856. https://doi.org/10.3390/su6020836.

    Article  Google Scholar 

  • Wetzel, R. G. (2001). Limnology: Lake and river ecosystems. Gulf Professional Publishing.

    Google Scholar 

  • Windi, I. M., Katariina, P., Timothy, A. J., Christina, L., Karkman, A., Robert, D., et al. (2016). Aquaculture changes the profile of antibiotic resistance and mobile genetic element associated genes in Baltic Sea sediments. FEMS Microbiology Ecology, 92, 4. https://doi.org/10.1093/femsec/fiw052.

    Article  Google Scholar 

Download references

Acknowledgements

The authors, Darwin Chatla and Gatreddi Srinu are grateful to the UGC for granting BSR (Basic Scientific Research) fellowship. Authors are thankful to the authorities of Acharya Nagarjuna University for providing necessary facilities in completing this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Padmavathi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chatla, D., Padmavathi, P., Srinu, G. (2020). Wastewater Treatment Techniques for Sustainable Aquaculture. In: Ghosh, S. (eds) Waste Management as Economic Industry Towards Circular Economy. Springer, Singapore. https://doi.org/10.1007/978-981-15-1620-7_17

Download citation

Publish with us

Policies and ethics