Skip to main content

Applying Attention Mechanism and Deep Neural Network for Medical Object Segmentation and Classification in X-Ray Fluoroscopy Images

  • Conference paper
  • First Online:
Human Brain and Artificial Intelligence (HBAI 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1072))

Included in the following conference series:

  • 653 Accesses

Abstract

We study how to apply attention mechanism and deep neural network for real-time segmentation and classification of balloon objects from X-ray fluoroscopy images during percutaneous balloon compression (PBC) surgical procedures. Fast and accurate identification of balloon shape and its relative location to the Meckel’s cave can be of significant benefit to the success of the PBC procedure. In this work, we combine the most successful region-based convolutional neural network pipeline with attention mechanism to address these challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Facial Pain Association: FPA Patient Guide: Understanding trigeminal neuralgia and other forms of neuropathic face pain (2019)

    Google Scholar 

  2. Adams, H., et al.: Harvey Cushing’s case series of trigeminal neuralgia at the Johns Hopkins Hospital: a surgeon’s quest to advance the treatment of the ‘suicide disease’. Acta Neurochir. 153(5), 1043–1050 (2011)

    Article  Google Scholar 

  3. Prasad, S., Galetta, S.: Trigeminal neuralgia: historical notes and current concepts. Neurologist 15(2), 87–94 (2009)

    Article  Google Scholar 

  4. NINDS, Trigeminal Neuralgia Fact Sheet. National Institute of Neurological Disorders and Stroke (2015)

    Google Scholar 

  5. Bendtsen, L., et al.: EAN guideline on trigeminal neuralgia. Eur. J. Neurol. 26, 831–849 (2019)

    Google Scholar 

  6. Velagala, J., Mendelson, Z.S., Liu, J.K.: Pain-free outcomes after surgical intervention for trigeminal neuralgia: a comparison of gamma knife and microvascular decompression. Neurosurgery 62(suppl 1), 228 (2015)

    Article  Google Scholar 

  7. Zakrzewska, J.M., Akram, H.: Neurosurgical interventions for the treatment of classical trigeminal neuralgia. Cochrane Database Syst. Rev. 9, CD007312 (2011)

    Google Scholar 

  8. Bhargava, D., et al.: TM2-4 Long Term Outcome of Percutaneous Balloon Compression for Trigeminal Neuralgia. BMJ Publishing Group Ltd., London (2019)

    Article  Google Scholar 

  9. Asplund, P.: Percutaneous Balloon Compression for the Treatment of Trigeminal Neuralgia, Umeå universitet (2019)

    Google Scholar 

  10. Aydoseli, A., et al.: Neuronavigation-assisted percutaneous balloon compression for the treatment of trigeminal neuralgia: the technique and short-term clinical results. Br. J. Neurosurgery 29, 1–7 (2015)

    Article  Google Scholar 

  11. Georgiopoulos, M., et al.: Minimizing technical failure of percutaneous balloon compression for trigeminal neuralgia using neuronavigation. ISRN Neurol. 2014, 630418 (2014)

    Google Scholar 

  12. Trojnik, T., Ŝmigoc, T.: Percutaneous trigeminal ganglion balloon compression rhizotomy: experience in 27 patients. Sci. World J. 2012, 328936 (2012)

    Google Scholar 

  13. Vala, H.J., Baxi, A.: A review on Otsu image segmentation algorithm. Int. J. Adv. Res. Comput. Eng. Technol. (IJARCET) 2(2), 387–389 (2013)

    Google Scholar 

  14. Wani, M.A., Batchelor, B.G.: Edge-region-based segmentation of range images. IEEE Trans. Pattern Anal. Mach. Intell. 3, 314–319 (1994)

    Article  Google Scholar 

  15. Senthilkumaran, N., Rajesh, R.: Edge detection techniques for image segmentation-a survey of soft computing approaches. Int. J. Recent Trends Eng. 1(2), 250 (2009)

    Google Scholar 

  16. Li, C.: Distance regularized level set evolution and its application to image segmentation. IEEE Trans. Image Process. 19(12), 3243–3254 (2010)

    Article  MathSciNet  Google Scholar 

  17. Coleman, G.B., Andrews, H.C.: Image segmentation by clustering. Proc. IEEE 67(5), 773–785 (1979)

    Article  Google Scholar 

  18. Sulaiman, S.N., Isa, N.A.M.: Adaptive fuzzy-K-means clustering algorithm for image segmentation. IEEE Trans. Consumer Electron. 56(4), 2661–2668 (2010)

    Article  Google Scholar 

  19. Chuang, K.-S., et al.: Fuzzy c-means clustering with spatial information for image segmentation. Comput. Med. Imaging Graph. 30(1), 9–15 (2006)

    Article  Google Scholar 

  20. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems (2012)

    Google Scholar 

  21. Girshick, R., et al.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2014)

    Google Scholar 

  22. Uijlings, J.R.: Selective search for object recognition. Int. J. Comput. Vis. 104(2), 154–171 (2013)

    Article  Google Scholar 

  23. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision (2015)

    Google Scholar 

  24. Ren, S., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems (2015)

    Google Scholar 

  25. He, K., et al.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision (2017)

    Google Scholar 

  26. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. In: International Conference on Learning Representations, San Diego, CA (2015)

    Google Scholar 

  27. Jiang, H., et al.: AHCNet: an application of attention mechanism and hybrid connection for liver tumor segmentation in CT volumes. IEEE Access 7, 24898–24909 (2019)

    Article  Google Scholar 

  28. Wang, W., et al.: Learning unsupervised video object segmentation through visual attention. In: CVPR (2019)

    Google Scholar 

  29. Simon, M., Rodner, E., Denzler, J.: Imagenet pre-trained models with batch normalization. arXiv preprint arXiv:1612.01452 (2016)

  30. Deng, J., et al.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition. IEEE (2009)

    Google Scholar 

  31. He, K., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  32. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  33. Lin, T.-Y., et al.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  34. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  35. Abdennebi, B., Guenane, L.: Technical considerations and outcome assessment in retrogasserian balloon compression for treatment of trigeminal neuralgia. Series of 901 patients. Surg. Neurol. Int. 5, 118 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitao Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Yan, J., Huang, H., Yencha, C. (2019). Applying Attention Mechanism and Deep Neural Network for Medical Object Segmentation and Classification in X-Ray Fluoroscopy Images. In: Zeng, A., Pan, D., Hao, T., Zhang, D., Shi, Y., Song, X. (eds) Human Brain and Artificial Intelligence. HBAI 2019. Communications in Computer and Information Science, vol 1072. Springer, Singapore. https://doi.org/10.1007/978-981-15-1398-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1398-5_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1397-8

  • Online ISBN: 978-981-15-1398-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics