Skip to main content

Multi-task Dictionary Learning Based on Convolutional Neural Networks for Longitudinal Clinical Score Predictions in Alzheimer’s Disease

  • Conference paper
  • First Online:
Human Brain and Artificial Intelligence (HBAI 2019)

Abstract

Computer-aided diagnosis (CAD) systems for medical images are seen as effective tools to improve the efficiency of diagnosis and prognosis of Alzheimer’s disease (AD). The current state-of-the-art models for many images analyzing tasks are based on Convolutional Neural Networks (CNN). However, the lack of training data is a common challenge in applying CNN to the diagnosis of AD and its prodromal stages. Another challenge for CAD applications is the controversy between the requiring of longitudinal cortical structural information for higher diagnosis/prognosis accuracy and the computing ability for processing varied imaging features. To address these two challenges, we propose a novel computer-aided AD diagnosis system CNN-Stochastic Coordinate Coding (MSCC) which integrates CNN with transfer learning strategy, a novel MSCC algorithm and our effective AD-related biomarkers–multivariate morphometry statistics (MMS). We applied the novel CNN-MSCC system on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset to predict future cognitive clinical measures with baseline Hippocampal/Ventricle MMS features and cortical thickness. The experimental results showed that CNN-MSCC achieved superior results. The proposed system may aid in expediting the diagnosis of AD progress, facilitating earlier clinical intervention, and resulting in improved clinical outcomes.

Q. Dong and J. Zhang—Authors contributed equally.

Acknowledgments: Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brookmeyer, R., Johnson, E., Ziegler-Graham, K., Michael Arrighi, H.: Forecasting the global burden of Alzheimer’s disease. Alzheimer’s Dementia 3(3), 186–191 (2007)

    Article  Google Scholar 

  2. Folstein, M.E.: A practical method for grading the cognitive state of patients for the children. J. Psychiatr res 12, 189–198 (1975)

    Article  Google Scholar 

  3. Rosen, W.G., Mohs, R.C., Davis, K.L.: A new rating scale for Alzheimer’s disease. Am. J. Psychiatry (1984)

    Google Scholar 

  4. Buckner, R.L.: Memory and executive function in aging and AD: multiple factors that cause decline and reserve factors that compensate. Neuron 44(1), 195–208 (2004)

    Article  Google Scholar 

  5. Thompson, P.M., et al.: Mapping hippocampal and ventricular change in Alzheimer disease. Neuroimage 22(4), 1754–1766 (2004)

    Article  Google Scholar 

  6. Chung, M.K., Robbins, S., Evans, A.C.: Unified statistical approach to cortical thickness analysis. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 627–638. Springer, Heidelberg (2005). https://doi.org/10.1007/11505730_52

    Chapter  Google Scholar 

  7. Frisoni, G.B., Fox, N.C., Jack Jr., C.R., Scheltens, P., Thompson, P.M.: The clinical use of structural MRI in Alzheimer disease. Nat. Rev. Neurol. 6(2), 67 (2010)

    Article  Google Scholar 

  8. Cacciaglia, R., et al.: Effects of APOE-\(\varepsilon \)4 allele load on brain morphology in a cohort of middle-aged healthy individuals with enriched genetic risk for Alzheimer’s disease. Alzheimer’s Dementia 14(7), 902–912 (2018)

    Google Scholar 

  9. Operto, G., et al.: White matter microstructure is altered in cognitively normal middle-aged APOE-\(\varepsilon \)4 homozygotes. Alzheimer’s Res. Ther. 10(1), 48 (2018)

    Article  Google Scholar 

  10. Dong, Q., et al.: Applying surface-based hippocampal morphometry to study APOE-E4 allele dose effects in cognitively unimpaired subjects. NeuroImage Clin. 22, 101744 (2019)

    Article  Google Scholar 

  11. Shi, J., et al.: Studying ventricular abnormalities in mild cognitive impairment with hyperbolic Ricci flow and tensor-based morphometry. NeuroImage 104, 1–20 (2015)

    Article  Google Scholar 

  12. Fan, Y., Wang, G., Lepore, N., Wang, Y.: A tetrahedron-based heat flux signature for cortical thickness morphometry analysis. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 420–428. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_48

    Chapter  Google Scholar 

  13. Zhang, J., et al.: Multi-task sparse screening for predicting future clinical scores using longitudinal cortical thickness measures. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 1406–1410. IEEE (2018)

    Google Scholar 

  14. Razavian, A.S., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 806–813 (2014)

    Google Scholar 

  15. Zhang, J.: Deep transfer learning via restricted Boltzmann machine for document classification. In: 2011 10th International Conference on Machine Learning and Applications and Workshops (ICMLA), vol. 1, pp. 323–326. IEEE (2011)

    Google Scholar 

  16. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  17. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  18. Turaga, S.C., et al.: Convolutional networks can learn to generate affinity graphs for image segmentation. Neural Comput. 22(2), 511–538 (2010)

    Article  Google Scholar 

  19. Hazlett, H.C., et al.: Early brain development in infants at high risk for autism spectrum disorder. Nature 542(7641), 348 (2017)

    Article  Google Scholar 

  20. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  21. Donoho, D.L., Elad, M.: Optimally sparse representation in general (nonorthogonal) dictionaries via L1 minimization. Proc. Natl. Acad. Sci. 100(5), 2197–2202 (2003)

    Article  MathSciNet  Google Scholar 

  22. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online dictionary learning for sparse coding. In: Proceedings of the 26th Annual International Conference on Machine Learning, ICML 2009, pp. 689–696. ACM, New York (2009)

    Google Scholar 

  23. Lin, B., et al.: Stochastic coordinate coding and its application for drosophila gene expression pattern annotation. arXiv preprint arXiv:1407.8147 (2014)

  24. Zhang, J., et al.: Hyperbolic space sparse coding with its application on prediction of Alzheimer’s disease in mild cognitive impairment. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9900, pp. 326–334. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46720-7_38

    Chapter  Google Scholar 

  25. Zhang, J., et al.: Applying sparse coding to surface multivariate tensor-based morphometry to predict future cognitive decline. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 646–650. IEEE (2016)

    Google Scholar 

  26. Zhang, D., Shen, D., Initiative, A.D.N., et al.: Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease. NeuroImage 59(2), 895–907 (2012)

    Article  Google Scholar 

  27. Zhang, W., et al.: Deep model based transfer and multi-task learning for biological image analysis. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1475–1484. ACM (2015)

    Google Scholar 

  28. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 248–255. IEEE (2009)

    Google Scholar 

  29. Kermany, D.S., et al.: Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172(5), 1122–1131 (2018)

    Article  Google Scholar 

  30. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  31. Weiner, M.W., et al.: The Alzheimer’s disease neuroimaging initiative: a review of papers published since its inception. Alzheimer’s Dementia 9(5), e111–e194 (2013)

    Article  Google Scholar 

  32. Canutescu, A.A., Dunbrack, R.L.: Cyclic coordinate descent: a robotics algorithm for protein loop closure. Protein Sci. 12(5), 963–972 (2003)

    Article  Google Scholar 

  33. Zhang, T.: Solving large scale linear prediction problems using stochastic gradient descent algorithms. In: Proceedings of the Twenty-First International Conference on Machine Learning, p. 116. ACM (2004)

    Google Scholar 

  34. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4(4), 1168–1200 (2005)

    Article  MathSciNet  Google Scholar 

  35. Duchesne, S., Caroli, A., Geroldi, C., Louis Collins, D., Frisoni, G.B.: Relating one-year cognitive change in mild cognitive impairment to baseline MRI features. NeuroImage 47(4), 1363–1370 (2009)

    Article  Google Scholar 

  36. Jack Jr., C.R., et al.: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Imaging: Official J. Int. Soc. Magn. Reson. Med. 27(4), 685–691 (2008)

    Article  Google Scholar 

  37. Patenaude, B., Smith, S.M., Kennedy, D.N., Jenkinson, M.: A Bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage 56(3), 907–922 (2011)

    Article  Google Scholar 

  38. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. In: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1987, pp. 163–169. ACM, New York (1987)

    Google Scholar 

  39. Wang, Y., et al.: Surface-based TBM boosts power to detect disease effects on the brain: an n = 804 ADNI study. Neuroimage 56(4), 1993–2010 (2011)

    Article  Google Scholar 

  40. Han, X., Chenyang, X., Prince, J.L.: A topology preserving level set method for geometric deformable models. IEEE Trans. Pattern Anal. Mach. Intell. 25(6), 755–768 (2003)

    Article  Google Scholar 

  41. Wang, Y., Chan, T.F., Toga, A.W., Thompson, P.M.: Multivariate tensor-based brain anatomical surface morphometry via holomorphic one-forms. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5761, pp. 337–344. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04268-3_42

    Chapter  Google Scholar 

  42. Fischl, B.: Freesurfer. Neuroimage 62(2), 774–781 (2012)

    Article  Google Scholar 

  43. Chung, M.K., Dalton, K.M., Davidson, R.J.: Tensor-based cortical surface morphometry via weighted spherical harmonic representation. IEEE Trans. Med. Imaging 27(8), 1143–1151 (2008)

    Article  Google Scholar 

  44. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093 (2014)

  45. Zhou, J., Liu, J., Narayan, V.A., Ye, J.: Modeling disease progression via multi-task learning. Neuroimage 78, 233–248 (2013)

    Article  Google Scholar 

  46. Suzuki, K.: Overview of deep learning in medical imaging. Radiol. Phys. Technol. 10(3), 257–273 (2017)

    Article  Google Scholar 

Download references

Acknowledgement

Algorithm development and image analysis for this study was funded, in part, by the National Institute on Aging (RF1AG051710 to QD, JZ, PMT, JY and YW, R01EB025-032 to YW, R01HL128818 to QD and YW, R01AG031581 and P30AG19610 to RJC, U54EB020403 to PMT and YW), the National Science Foundation (IIS-1421165 to JZ and YW), and Arizona Alzheimer’s Consortium (JZ, RJC and YW). We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Tesla K40 GPU used for this research.

Data collection and sharing for this project was funded by the ADNI (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Qunxi Dong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dong, Q. et al. (2019). Multi-task Dictionary Learning Based on Convolutional Neural Networks for Longitudinal Clinical Score Predictions in Alzheimer’s Disease. In: Zeng, A., Pan, D., Hao, T., Zhang, D., Shi, Y., Song, X. (eds) Human Brain and Artificial Intelligence. HBAI 2019. Communications in Computer and Information Science, vol 1072. Springer, Singapore. https://doi.org/10.1007/978-981-15-1398-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1398-5_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1397-8

  • Online ISBN: 978-981-15-1398-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics