Skip to main content

Monitoring in Thoracic Surgery

  • Chapter
  • First Online:
Clinical Thoracic Anesthesia
  • 599 Accesses

Abstract

Monitoring is an integral part of our life, affecting it one way or the other; food, education security and health. Even animals monitor the environment for their food and survival. Monitoring is so important that it affects almost all aspects of life, e.g. security, food, education and health. Monitoring the patient is not unknown during ancient period. Ancient Indian surgical textbook ‘Sushruta Samhita’ explained about the monitoring during pregnancy [1]. Monitoring of various parameters can guide the person regarding deviation from normal path. Sensitive monitors can detect and warn even with minimal change in haemodynamics and other important parameters. Intervention at the initial stage can decrease morbidity and mortality. In health care system, there has been a vast advancement in newer technology, various gadgets and tools of monitoring are changing very fast. Monitoring with recently developed devices has proved to be of utmost importance to improve health care system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kaviraj doctor Ambikadutt Shastri. Sushruta Samhita: Sharira-Sthanam; Garbhavkrantishariram, vol 1. Publiisher-Chaukhmba Sanskrit Sansthan, Varanasi; Reprint 2014.

    Google Scholar 

  2. Tamene A, Sattiraju S, Wang K, et al. Brugada-like electrocardiography pattern induced by severe hyponatraemia. Europace. 2010;12(6):905–7.

    Google Scholar 

  3. Tsilakis D, Kranidis A, Koulouris S, et al. ECG changes associated with right-sided pneumothorax. Hosp Chron. 2007;2(3):108–10.

    Google Scholar 

  4. Walston A, Brewer DL, Kitchens CS, et al. The electrocardiographic manifestations of spontaneous left pneumothorax. Ann Intern Med. 1974;80(3):375–9.

    Google Scholar 

  5. Saks MA, Griswold-Theodorson S, Shinaishin F, et al. Subacute tension hemopneumothorax with novel electrocardiogram findings. West J Emerg Med. 2010;11(1):86–9.

    Google Scholar 

  6. Ryan KL, Rickards CA, Ludwig DA, et al. Tracking central hypovolemia with ecg in humans: cautions for the use of heart period variability in patient monitoring. Shock. 2010;33(6):583–9.

    Google Scholar 

  7. Ceylan B, Khorshid L, Güneş ÜY, et al. Evaluation of oxygen saturation values in different body positions in healthy individuals. J Clin Nurs. 2016;25(7-8):1095–100.

    Google Scholar 

  8. Laishley RS, Aps C. Tension pneumothorax and pulse oximetry. Br J Anaesth. 1991;66(2):250–2.

    Article  CAS  Google Scholar 

  9. Neagley SR, Zwillich CW. The effect of positional changes on oxygenation in patients with pleural effusions. Chest. 1985;88(5):714–7.

    Article  CAS  Google Scholar 

  10. Laishley RS, Aps C. Tension pneumothorax and pulse oximetry. Br J Anaesth. 1991;66(2):250–2.

    Article  CAS  Google Scholar 

  11. Michaelides SA, Michailidis AR, Bablekos GD, et al. Does size matter concerning impact of position on oxygenation status in spontaneously breathing patients with unilateral effusion? Postgrad Med J. 2018;94(1108):81–6.

    Google Scholar 

  12. Scheeren TWL, Belda FJ, Perel A. The oxygen reserve index (ORI): a new tool to monitor oxygen therapy. J Clin Monit Comput. 2018;32(3):379–89.

    Article  CAS  Google Scholar 

  13. Szmuk P, Steiner JW, Olomu PN, et al. Oxygen reserve index: A novel noninvasive measure of oxygen reserve—a pilot study. Anesthesiology. 2016;124(4):779–84.

    Google Scholar 

  14. Koishi W, Kumagai M, Ogawa S, et al. Monitoring the Oxygen Reserve Index can contribute to the early detection of deterioration in blood oxygenation during one-lung ventilation. Minerva Anestesiol. 2018;84(9):1063–9.

    Google Scholar 

  15. Barker SJ. “Motion-resistant” pulse oximetry: a comparison of new and old models. Anesth Analg. 2002;95(4):967–72.

    Article  Google Scholar 

  16. Forget P, Lois F, de Kock M. Goal-directed fluid management based on the pulse oximeter-derived pleth variability index reduces lactate levels and improves fluid management. Anesth Analg. 2010;111(4):910–4.

    PubMed  Google Scholar 

  17. Cannesson M, Desebbe O, Rosamel P, et al. Pleth variability index to monitor the respiratory variations in the pulse oximeter plethysmographic waveform amplitude and predict fluid responsiveness in the operating theatre. Br J Anaesth. 2008;101(2):200–6.

    Google Scholar 

  18. Eşer I, Khorshid L, Güneş UY, et al. The effect of different body positions on blood pressure. J Clin Nurs. 2007;16(1):137–40.

    Google Scholar 

  19. Park HS, Park KY. Blood pressure variation on each measuring site in the right lateral position. J Korean Academy Nurs. 2002;32(7):986–91.

    Article  Google Scholar 

  20. Lakhal K, Robert-Edan V. Invasive monitoring of blood pressure: a radiant future for brachial artery as an alternative to radial artery catheterisation? J Thorac Dis. 2017;9(12):4812–6.

    Article  Google Scholar 

  21. Singh A, Wakefield BJ, Duncan AE. Complications from brachial arterial pressure monitoring are rare in patients having cardiac surgery. J Thorac Dis. 2018;10(2):E158–9.

    Article  Google Scholar 

  22. Potger KC, Elliott D. Reproducibility of central venous pressures in supine and lateral positions: a pilot evaluation of the phlebostatic axis in critically ill patients. Heart Lung. 1994;23(4):285–99.

    CAS  PubMed  Google Scholar 

  23. Hong SH, Choi JH, Lee J. The changes of central venous pressure by body posture and positive end-expiratory pressure. Korean J Anesthesiol. 2009;57(6):723–8.

    Google Scholar 

  24. Gandhi SK, Munshi CA, Coon R, et al. Capnography for detection of endobronchial migration of an endotracheal tube. J Clin Monit. 1991;7(1):35–8.

    Google Scholar 

  25. Song IK, Ro S, Lee JH, et al. Reference levels for central venous pressure and pulmonary artery occlusion pressure monitoring in the lateral position. J Cardiothorac Vasc Anesth. 2017;31(3):939–43.

    Google Scholar 

  26. Gandhi SK, Munshi CA, Coon R, et al. Capnography for detection of endobronchial migration of an endotracheal tube. J Clin Monit. 1991;7(1):35–8.

    Google Scholar 

  27. Fisicaro MD, Maguire DP, Armstead VE. Using the capnograph to confirm lung isolation when using a bronchial blocker. J Clin Anesth. 2010;22(7):557–9.

    Article  Google Scholar 

  28. Kugelman A, Zeiger-Aginsky D, Bader D, et al. A novel method of distal end-tidal CO2 capnography in intubated infants: comparison with arterial CO2 and with proximal mainstream end-tidal CO2. Pediatrics. 2008;122(6):e1219–24.

    Google Scholar 

  29. Shankar KB, Russell R, Aklog L, et al. Dual capnography facilitates detection of a critical perfusion defect in an individual lung. Anesthesiology. 1999;90(1):302–4.

    Google Scholar 

  30. Bardoczky G, d’Hollander A, Yernault JC, et al. On-line expiratory flow-volume curves during thoracic surgery: occurrence of auto-PEEP. Br J Anaesth. 1994;72(1):25–8.

    Google Scholar 

  31. Araki K, Nomura R, Urushibara R, et al. Displacement of the double-lumen endobronchial tube can be detected by bronchial cuff pressure change. Anesth Analg. 1997;84(6):1349–53.

    Google Scholar 

  32. Nacheli GC, Sharma M, Wang X, et al. Novel device (AirWave) to assess endotracheal tube migration: a pilot study. J Crit Care. 2013;28(4):535.e1–8.

    Google Scholar 

  33. Bardoczry G, deFrancquen P, Rocmans P, et al. Monitoring of flow-volume and pressure-volume loops during one lung ventilation. J Cardiothoracic Vascular Anaesth 1994;8(3):59.

    Google Scholar 

  34. Bardoczky GI, Levarlet M, Engelman E, et al. Continuous spirometry for detection of double-lumen endobronchial tube displacement. Br J Anaesth. 1993;70(5):499–502.

    Google Scholar 

  35. Li C, Lin FQ, Fu SK, et al. Stroke volume variation for prediction of fluid responsiveness in patients undergoing gastrointestinal surgery. Int J Med Sci. 2013;10(2):148–55.

    Google Scholar 

  36. Haas S, Eichhorn V, Hasbach T, et al. Goal-directed fluid therapy using stroke volume variation does not result in pulmonary fluid overload in thoracic surgery requiring one-lung ventilation. Crit Care Res Pract. 2012;2012:687018.

    Google Scholar 

  37. Grassi P, Lo Nigro L, Battaglia K, et al. Pulse pressure variation as a predictor of fluid responsiveness in mechanically ventilated patients with spontaneous breathing activity: a pragmatic observational study. HSR Proc Intensive Care Cardiovasc Anesth. 2013;5(2):98–109.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Panday, B.C. (2020). Monitoring in Thoracic Surgery. In: Sood, J., Sharma, S. (eds) Clinical Thoracic Anesthesia. Springer, Singapore. https://doi.org/10.1007/978-981-15-0746-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0746-5_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0745-8

  • Online ISBN: 978-981-15-0746-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics