Skip to main content

Ventilation Strategies for Thoracic Surgery

  • Chapter
  • First Online:
Clinical Thoracic Anesthesia
  • 634 Accesses

Abstract

The purpose of one-lung ventilation (OLV) during thoracic surgery is to provide an optimal surgical access while maintaining optimal oxygenation (SpO2 > 90%) and avoiding acute lung injury (ALI). The three key components of OLV strategy are: use of low VT, artificial recruitment maneuvers, and application of positive end-expiratory pressure (PEEP). Pressure control ventilation (PCV) is the preferred mode of ventilation during OLV as it results in more homogenous distribution of VT in comparison to volume control ventilation (VCV). The incidence of intraoperative hypoxemia during OLV is 1–10%. The immediate treatment in case of severe hypoxemia (oxygen saturation < 90%) is to increase FiO2 to 1.0 and resumption of two-lung ventilation (TLV). Treatment options include lung recruitment and application of continuous positive airway pressure (CPAP) to the operative lung. Pharmacological therapy for intraoperative hypoxemia includes use of vasoconstrictors like almitrine, phenylephrine on the operative side, and vasodilators such as inhaled NO in the dependent-ventilated lung.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fischer GW, Cohen E. An update on anesthesia for thoracoscopic surgery. Curr Opin Anaesthesiol. 2010;23:7–11.

    Article  Google Scholar 

  2. Bernasconi F, Piccioni F. One-lung ventilation for thoracic surgery: current perspectives. Tumori. 2017;103:495–503.

    Article  Google Scholar 

  3. Ishikawa S, Lohser J. One-lung ventilation and arterial oxygenation. Curr Opin Anaesthesiol. 2011;24:24–31.

    Article  Google Scholar 

  4. Şentürk M, Slinger P, Cohen E. Intraoperative mechanical ventilation strategies for one-lung ventilation. Best Pract Res Clin Anaesthesiol. 2015;29:357–69.

    Article  Google Scholar 

  5. Schilling T, Kozian A, Huth C, et al. The pulmonary immune effects of mechanical ventilation in patients undergoing thoracic surgery. Anesth Analg. 2005;101:957–65.

    Google Scholar 

  6. Kozian A, Schilling T, Röcken C, et al. Increased alveolar damage after mechanical ventilation in a porcine model of thoracic surgery. J Cardiothorac Vasc Anesth. 2010;24:617–23.

    Google Scholar 

  7. Alphonsus CS, Rodseth RN. The endothelial glycocalyx: a review of the vascular barrier. Anaesthesia. 2014;69:777–84.

    Article  CAS  Google Scholar 

  8. Slutsky AS, Ranieri VM. Ventilator-induced lung injury. N Engl J Med. 2013;369:2126–36.

    Article  CAS  Google Scholar 

  9. Haitsma JJ, Lachmann B. Lung protective ventilation in ARDS: the open lung maneuver. Minerva Anestesiol. 2006;72:117–32.

    CAS  PubMed  Google Scholar 

  10. Flacke JW, Thompson DS, Read RC. Influence of tidal volume and pulmonary artery occlusion on arterial oxygenation during endobronchial anesthesia. South Med J. 1976;69:619–26.

    Article  CAS  Google Scholar 

  11. Jeon K, Yoon JW, Suh GY, et al. Risk factors for post-pneumonectomy acute lung injury/acute respiratory distress syndrome in primary lung cancer patients. Anaesth Intensive Care. 2009;37:14–9.

    Google Scholar 

  12. Morisaki H, Serita R, Innami Y, et al. Permissive hypercapnia during thoracic anaesthesia. Acta Anaesthesiol Scand. 1999;43:845–9.

    Google Scholar 

  13. Schultz MJ, Haitsma JJ, Slutsky AS, et al. What tidal volumes should be used in patients without acute lung injury? Anesthesiology. 2007;106:1226–31.

    Google Scholar 

  14. Tremblay LN, Slutsky AS. Ventilator-induced lung injury: from the bench to the bedside. Intensive Care Med. 2006;32:24–33.

    Article  Google Scholar 

  15. Slinger PD, Kruger M, McRae K, et al. Relation of the static compliance curve and positive end-expiratory pressure to oxygenation during one-lung ventilation. Anesthesiology. 2001;95:1096–102.

    Google Scholar 

  16. Valenza F, Ronzoni G, Perrone L, et al. Positive end-expiratory pressure applied to the dependent lung during one-lung ventilation improves oxygenation and respiratory mechanics in patients with high FEV1. Eur J Anaesthesiol. 2004;21:938–43.

    Google Scholar 

  17. Daly BDT, Edmonds CH, Norman JC. In vivo alveolar morphometrics with positive and expiratory pressure. Surg Forum. 1973;24:217–9.

    CAS  PubMed  Google Scholar 

  18. Bardoczky GI, d'Hollander AA, Cappello M, et al. Interrupted expiratory flow on automatically constructed flow-volume curves may determine the presence of intrinsic positive end-expiratory pressure during one-lung ventilation. Anesth Analg. 1998;86:880–4.

    Google Scholar 

  19. Lohser J. Evidence-based management of one-lung ventilation. Anesthesiol Clin. 2008;26:241–72.

    Article  Google Scholar 

  20. Tusman G, Bohm SH, Suarez-Sipmann F. Alveolar recruitment maneuvers for one-lung ventilation during thoracic anesthesia. Curr Anesthesiol Report. 2014;4:160–9.

    Article  Google Scholar 

  21. Tusman G, Böhm SH, Sipmann FS, et al. Lung recruitment improves the efficiency of ventilation and gas exchange during one-lung ventilation anesthesia. Anesth Analg. 2004;98:1604–9.

    Google Scholar 

  22. Unzueta C, Tusman G, Suarez-Sipmann F, et al. Alveolar recruitment improves ventilation during thoracic surgery: a randomized controlled trial. Br J Anaesth. 2012;108:517–24.

    Google Scholar 

  23. Mahfood S, Hix WR, Aaron BL, et al. Reexpansion pulmonary edema. Ann Thorac Surg. 1988;45:340–5.

    Google Scholar 

  24. Misthos P, Katsaragakis S, Theodorou D, et al. The degree of oxidative stress is associated with major adverse effects after lung resection: a prospective study. Eur J Cardiothorac Surg. 2006;29:591–5.

    Google Scholar 

  25. Jordan S, Mitchell JA, Quinlan GJ, et al. The pathogenesis of lung injury following pulmonary resection. Eur Respir J. 2000;15:790–9.

    Google Scholar 

  26. Campbell RS, Davis BR. Pressure-controlled versus volume-controlled ventilation: does it matter? Respir Care. 2002;47:416–24.

    PubMed  Google Scholar 

  27. Unzueta MC, Casas JI, Moral MV. Pressure-controlled versus volume-controlled ventilation during one-lung ventilation for thoracic surgery. Anesth Analg. 2007;104:1029–33.

    Article  Google Scholar 

  28. Schultz MJ, Haitsma JJ, Slutsky AS, et al. What tidal volumes should be used in patients without acute lung injury? Anesthesiology. 2007;106:1226–31.

    Google Scholar 

  29. Nichols D, Haranath S. Pressure control ventilation. Crit Care Clin. 2007;23:183–99.

    Article  Google Scholar 

  30. Kim KN, Kim DW, Jeong MA, et al. Comparison of pressure-controlled ventilation with volume-controlled ventilation during one-lung ventilation: a systematic review and meta-analysis. BMC Anesthesiol. 2016;16:72.

    Google Scholar 

  31. Dikmen Y, Aykac B, Erolçay H. Unilateral high frequency jet ventilation during one-lung ventilation. Eur J Anaesthesiol. 1997;14:239–43.

    Article  CAS  Google Scholar 

  32. Ng JM. Hypoxemia during one-lung ventilation: jet ventilation of the middle and lower lobes during right upper lobe sleeve resection. Anesth Analg. 2005;101:1554–5.

    Article  Google Scholar 

  33. Ihra G, Gockner G, Kashanipour A, et al. High-frequency jet ventilation in European and North American institutions: developments and clinical practice. Eur J Anaesthesiol. 2000;17:418–30.

    Google Scholar 

  34. Hurford WE, Kolker AC, Strauss HW. The use of ventilation/perfusion lung scans to predict oxygenation during one-lung anesthesia. Anesthesiology. 1987;67:841–4.

    Article  CAS  Google Scholar 

  35. Hurford WE, Alfille PH. A quality improvement study of the placement and complications of double-lumen endobronchial tubes. J Cardiothorac Vasc Anesth. 1993;7:517–20.

    Article  CAS  Google Scholar 

  36. Brodsky JB, Lemmens HJ. Left double-lumen tubes: clinical experience with 1,170 patients. J Cardiothorac Vasc Anesth. 2003;17:289–98.

    Article  Google Scholar 

  37. Lasher J, Ishikawa S. Clinical Management of one lung ventilation. In: Slinger P, editor. Principles and practices of anesthesia for thoracic surgery. New York: Springer; 2011. p. 83–101.

    Google Scholar 

  38. Russell WJ. Intermittent positive airway pressure to manage hypoxia during one-lung anaesthesia. Anaesth Intensive Care. 2009;37:432–4.

    Article  CAS  Google Scholar 

  39. Ku CM, Slinger P, Waddell TK. A novel method of treating hypoxemia during one-lung ventilation for thoracoscopic surgery. J Cardiothorac Vasc Anesth. 2009;23:850–2.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sethi, N. (2020). Ventilation Strategies for Thoracic Surgery. In: Sood, J., Sharma, S. (eds) Clinical Thoracic Anesthesia. Springer, Singapore. https://doi.org/10.1007/978-981-15-0746-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0746-5_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0745-8

  • Online ISBN: 978-981-15-0746-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics