Skip to main content

Thyroid Hormone System and Development

  • Chapter
  • First Online:
Health Impacts of Developmental Exposure to Environmental Chemicals
  • 708 Accesses

Abstract

In recent years, many studies have been published regarding thyroid hormones (THs)-disrupting effects of environmental chemicals. THs play a crucial role in normal fetal growth and maturation. Even before the fetal thyroid gland matures and starts to secrete THs, THs are detected in the fetal cerebral cortex, thereby confirming that fetuses completely rely on the maternal TH supply by the end of the first trimester. Therefore, exposure of pregnant women and their fetus to environmental chemicals that can interfere with THs has been of special concern. This chapter covers mainly recent findings on the epidemiological studies which investigated the associations between prenatal exposure to environmental chemicals and neonatal TH concentrations. In addition, possible mechanisms of thyroid-disrupting action by each chemical are drawn such as competitive bindings to TH transport proteins, interference of TH regulation, synthesis, and metabolism. Further, we emphasize a need for longitudinal studies to more completely assess whether the effects of chemical exposure on TH level, particularly during sensitive developmental windows, such as in fetal life and early infancy, are permanent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Joffe RT, Sokolov ST. Thyroid hormones, the brain, and affective disorders. Crit Rev Neurobiol. 1994;8(1-2):45–63.

    CAS  PubMed  Google Scholar 

  2. Neale DM, Cootauco AC, Burrow G. Thyroid disease in pregnancy. Clin Perinatol. 2007;34(4):543–57.

    Article  PubMed  Google Scholar 

  3. Obregon MJ, Calvo RM, Del Rey FE, de Escobar GM. Ontogenesis of thyroid function and interactions with maternal function. Endocr Dev. 2007;10:86–98.

    Article  CAS  PubMed  Google Scholar 

  4. Calvo RM, Jauniaux E, Gulbis B, Asuncion M, Gervy C, Contempre B, et al. Fetal tissues are exposed to biologically relevant free thyroxine concentrations during early phases of development. J Clin Endocrinol Metab. 2002;87(4):1768–77.

    Article  CAS  PubMed  Google Scholar 

  5. Kester MH, Martinez de Mena R, Obregon MJ, Marinkovic D, Howatson A, Visser TJ, et al. Iodothyronine levels in the human developing brain: major regulatory roles of iodothyronine deiodinases in different areas. J Clin Endocrinol Metab. 2004;89(7):3117–28.

    Article  CAS  PubMed  Google Scholar 

  6. de Escobar GM, Obregon MJ, del Rey FE. Maternal thyroid hormones early in pregnancy and fetal brain development. Best Pract Res Clin Endocrinol Metab. 2004;18(2):225–48.

    Article  PubMed  CAS  Google Scholar 

  7. LaFranchi SH, Austin J. How should we be treating children with congenital hypothyroidism? J Pediatr Endocrinol Metab. 2007;20(5):559–78.

    Article  CAS  PubMed  Google Scholar 

  8. Gyamfi C, Wapner RJ, D’Alton ME. Thyroid dysfunction in pregnancy: the basic science and clinical evidence surrounding the controversy in management. Obstet Gynecol. 2009;113(3):702–7.

    Article  PubMed  Google Scholar 

  9. Andersen SL, Laurberg P, Wu CS, Olsen J. Attention deficit hyperactivity disorder and autism spectrum disorder in children born to mothers with thyroid dysfunction: A Danish Nationwide Cohort Study. BJOG. 2014;121(11):1365–74.

    Article  CAS  PubMed  Google Scholar 

  10. Medici M, de Rijke YB, Peeters RP, Visser W, de Muinck Keizer-Schrama SM, Jaddoe VV, et al. Maternal early pregnancy and newborn thyroid hormone parameters: The Generation R Study. J Clin Endocrinol Metab. 2012;97(2):646–52.

    Article  CAS  PubMed  Google Scholar 

  11. Kodavanti PR, Curras-Collazo MC. Neuroendocrine actions of organohalogens: thyroid hormones, arginine vasopressin, and neuroplasticity. Front Neuroendocrinol. 2010;31(4):479–96.

    Article  CAS  PubMed  Google Scholar 

  12. Schreiber G, Southwell BR, Richardson SJ. Hormone delivery systems to the brain-transthyretin. Exp Clin Endocrinol Diabetes. 1995;103(2):75–80.

    Article  CAS  PubMed  Google Scholar 

  13. Jacobson JL, Jacobson SW. Dose-response in perinatal exposure to polychlorinated biphenyls (PCBs): the Michigan and North Carolina Cohort Studies. Toxicol Ind Health. 1996;12(3-4):435–45.

    Article  CAS  PubMed  Google Scholar 

  14. Schantz SL, Widholm JJ, Rice DC. Effects of PCB exposure on neuropsychological function in children. Environ Health Perspect. 2003;111(3):357–576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Koopman-Esseboom C, Weisglas-Kuperus N, de Ridder MA, Van der Paauw CG, Tuinstra LG, Sauer PJ. Effects of polychlorinated biphenyl/dioxin exposure and feeding type on infants’ mental and psychomotor development. Pediatrics. 1996;97(5):700–6.

    CAS  PubMed  Google Scholar 

  16. Sagiv SK, Thurston SW, Bellinger DC, Tolbert PE, Altshul LM, Korrick SA. Prenatal organochlorine exposure and behaviors associated with attention deficit hyperactivity disorder in school-aged children. Am J Epidemiol. 2010;171(5):593–601.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lyall K, Croen LA, Sjodin A, Yoshida CK, Zerbo O, Kharrazi M, et al. Polychlorinated biphenyl and organochlorine pesticide concentrations in maternal mid-pregnancy serum samples: association with autism spectrum disorder and intellectual disability. Environ Health Perspect. 2017;125(3):474–80.

    Article  CAS  PubMed  Google Scholar 

  18. Crofton KM. Thyroid disrupting chemicals: mechanisms and mixtures. Int J Androl. 2008;31(2):209–23.

    Article  CAS  PubMed  Google Scholar 

  19. Crofton KM, Craft ES, Hedge JM, Gennings C, Simmons JE, Carchman RA, et al. Thyroid-hormone-disrupting chemicals: evidence for dose-dependent additivity or synergism. Environ Health Perspect. 2005;113(11):1549–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. van der Plas SA, Lutkeschipholt I, Spenkelink B, Brouwer A. Effects of subchronic exposure to complex mixtures of dioxin-like and non-dioxin-like polyhalogenated aromatic compounds on thyroid hormone and vitamin A levels in female Sprague-Dawley rats. Toxicol Sci. 2001;59(1):92–100.

    Article  PubMed  Google Scholar 

  21. Meerts IA, Assink Y, Cenijn PH, Van Den Berg JH, Weijers BM, Bergman A, et al. Placental transfer of a hydroxylated polychlorinated biphenyl and effects on fetal and maternal thyroid hormone homeostasis in the rat. Toxicol Sci. 2002;68(2):361–71.

    Article  CAS  PubMed  Google Scholar 

  22. Gabrielsen KM, Villanger GD, Lie E, Karimi M, Lydersen C, Kovacs KM, et al. Levels and patterns of hydroxylated polychlorinated biphenyls (OH-PCBs) and their associations with thyroid hormones in hooded seal (Cystophora cristata) mother-pup pairs. Aquat Toxicol. 2011;105(3-4):482–91.

    Article  CAS  PubMed  Google Scholar 

  23. Brouwer A, Morse DC, Lans MC, Schuur AG, Murk AJ, Klasson-Wehler E, et al. Interactions of persistent environmental organohalogens with the thyroid hormone system: mechanisms and possible consequences for animal and human health. Toxicol Ind Health. 1998;14(1-2):59–84.

    Article  CAS  PubMed  Google Scholar 

  24. Lans MC, Klasson-Wehler E, Willemsen M, Meussen E, Safe S, Brouwer A. Structure-dependent, competitive interaction of hydroxy-polychlorobiphenyls, -dibenzo-p-dioxins and -dibenzofurans with human transthyretin. Chem Biol Interact. 1993;88(1):7–21.

    Article  CAS  PubMed  Google Scholar 

  25. Meerts IA, van Zanden JJ, Luijks EA, van Leeuwen-Bol I, Marsh G, Jakobsson E, et al. Potent competitive interactions of some brominated flame retardants and related compounds with human transthyretin in vitro. Toxicol Sci. 2000;56(1):95–104.

    Article  CAS  PubMed  Google Scholar 

  26. Schuur AG, Legger FF, van Meeteren ME, Moonen MJ, van Leeuwen-Bol I, Bergman A, et al. In vitro inhibition of thyroid hormone sulfation by hydroxylated metabolites of halogenated aromatic hydrocarbons. Chem Res Toxicol. 1998;11(9):1075–81.

    Article  CAS  PubMed  Google Scholar 

  27. Nishimura N, Yonemoto J, Miyabara Y, Sato M, Tohyama C. Rat thyroid hyperplasia induced by gestational and lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Endocrinology. 2003;144(5):2075–83.

    Article  CAS  PubMed  Google Scholar 

  28. White SS, Birnbaum LS. An overview of the effects of dioxins and dioxin-like compounds on vertebrates, as documented in human and ecological epidemiology. J Environ Sci Health C. 2009;27(4):197–211.

    Article  CAS  Google Scholar 

  29. Hernandez JP, Mota LC, Baldwin WS. Activation of CAR and PXR by dietary, environmental and occupational chemicals alters drug metabolism, intermediary metabolism, and cell proliferation. Curr Pharmacogenomics Pers Med. 2009;7(2):81–105.

    Article  CAS  Google Scholar 

  30. Viluksela M, Raasmaja A, Lebofsky M, Stahl BU, Rozman KK. Tissue-specific effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the activity of 5′-deiodinases I and II in rats. Toxicol Lett. 2004;147(2):133–42.

    Article  CAS  PubMed  Google Scholar 

  31. Maervoet J, Vermeir G, Covaci A, Van Larebeke N, Koppen G, Schoeters G, et al. Association of thyroid hormone concentrations with levels of organochlorine compounds in cord blood of neonates. Environ Health Perspect. 2007;115(12):1780–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Herbstman JB, Sjodin A, Apelberg BJ, Witter FR, Halden RU, Patterson DG, et al. Birth delivery mode modifies the associations between prenatal polychlorinated biphenyl (PCB) and polybrominated diphenyl ether (PBDE) and neonatal thyroid hormone levels. Environ Health Perspect. 2008;116(10):1376–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Darnerud PO, Lignell S, Glynn A, Aune M, Tornkvist A, Stridsberg M. POP levels in breast milk and maternal serum and thyroid hormone levels in mother-child pairs from Uppsala, Sweden. Environ Int. 2010;36(2):180–7.

    Article  CAS  PubMed  Google Scholar 

  34. Berg V, Nost TH, Pettersen RD, Hansen S, Veyhe AS, Jorde R, et al. Persistent organic pollutants and the association with maternal and infant thyroid homeostasis: a multipollutant assessment. Environ Health Perspect. 2016;125(1):127–33.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chevrier J, Eskenazi B, Bradman A, Fenster L, Barr DB. Associations between prenatal exposure to polychlorinated biphenyls and neonatal thyroid-stimulating hormone levels in a Mexican-American population, Salinas Valley, California. Environ Health Perspect. 2007;115(10):1490–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Alvarez-Pedrerol M, Ribas-Fito N, Torrent M, Carrizo D, Garcia-Esteban R, Grimalt JO, et al. Thyroid disruption at birth due to prenatal exposure to beta-hexachlorocyclohexane. Environ Int. 2008;34(6):737–40.

    Article  PubMed  Google Scholar 

  37. Wang S-L, Su P-H, Jong S-B, Guo YL, Chou W-L, Päpke O. In utero exposure to dioxins and polychlorinated biphenyls and its relations to thyroid function and growth hormone in newborns. Environ Health Perspect. 2005;113(11):1645–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Baba T, Ito S, Yuasa M, Yoshioka E, Miyashita C, Araki A, et al. Association of prenatal exposure to PCDD/Fs and PCBs with maternal and infant thyroid hormones: The Hokkaido Study on Environment and Children’s Health. Sci Total Environ. 2018;615:1239–46.

    Article  CAS  PubMed  Google Scholar 

  39. Soechitram SD, Berghuis SA, Visser TJ, Sauer PJ. Polychlorinated biphenyl exposure and deiodinase activity in young infants. Sci Total Environ. 2017;574:1117–24.

    Article  CAS  PubMed  Google Scholar 

  40. de Cock M, de Boer MR, Lamoree M, Legler J, van de Bor M. Prenatal exposure to endocrine disrupting chemicals in relation to thyroid hormone levels in infants – a Dutch prospective cohort study. Environ Health. 2014;13:106.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Hisada A, Shimodaira K, Okai T, Watanabe K, Takemori H, Takasuga T, et al. Associations between levels of hydroxylated PCBs and PCBs in serum of pregnant women and blood thyroid hormone levels and body size of neonates. Int J Hyg Environ Health. 2013;217(4-5):546–53.

    Article  PubMed  CAS  Google Scholar 

  42. Lopez-Espinosa MJ, Vizcaino E, Murcia M, Fuentes V, Garcia AM, Rebagliato M, et al. Prenatal exposure to organochlorine compounds and neonatal thyroid stimulating hormone levels. J Expo Sci Environ Epidemiol. 2010;20(7):579–88.

    Article  CAS  PubMed  Google Scholar 

  43. Dallaire R, Muckle G, Dewailly E, Jacobson SW, Jacobson JL, Sandanger TM, et al. Thyroid hormone levels of pregnant inuit women and their infants exposed to environmental contaminants. Environ Health Perspect. 2009;117(6):1014–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wilhelm M, Wittsiepe J, Lemm F, Ranft U, Kramer U, Furst P, et al. The Duisburg Birth Cohort Study: influence of the prenatal exposure to PCDD/Fs and dioxin-like PCBs on thyroid hormone status in newborns and neurodevelopment of infants until the age of 24 months. Mutat Res. 2008;659(1-2):83–92.

    Article  CAS  PubMed  Google Scholar 

  45. Dallaire R, Dewailly E, Ayotte P, Muckle G, Laliberte C, Bruneau S. Effects of prenatal exposure to organochlorines on thyroid hormone status in newborns from two remote coastal regions in Quebec, Canada. Environ Res. 2008;108(3):387–92.

    Article  CAS  PubMed  Google Scholar 

  46. Otake T, Yoshinaga J, Enomoto T, Matsuda M, Wakimoto T, Ikegami M, et al. Thyroid hormone status of newborns in relation to in utero exposure to PCBs and hydroxylated PCB metabolites. Environ Res. 2007;105(2):240–6.

    Article  CAS  PubMed  Google Scholar 

  47. Takser L, Mergler D, Baldwin M, de Grosbois S, Smargiassi A, Lafond J. Thyroid hormones in pregnancy in relation to environmental exposure to organochlorine compounds and mercury. Environ Health Perspect. 2005;113(8):1039–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ribas-Fito N, Sala M, Cardo E, Mazon C, De Muga ME, Verdu A, et al. Organochlorine compounds and concentrations of thyroid stimulating hormone in newborns. Occup Environ Med. 2003;60(4):301–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Steuerwald U, Weihe P, Jorgensen PJ, Bjerve K, Brock J, Heinzow B, et al. Maternal seafood diet, methylmercury exposure, and neonatal neurologic function. J Pediatr. 2000;136(5):599–605.

    Article  CAS  PubMed  Google Scholar 

  50. Abdelouahab N, Langlois MF, Lavoie L, Corbin F, Pasquier JC, Takser L. Maternal and cord-blood thyroid hormone levels and exposure to polybrominated diphenyl ethers and polychlorinated biphenyls during early pregnancy. Am J Epidemiol. 2013;178(5):701–13.

    Article  PubMed  Google Scholar 

  51. Itoh S, Baba T, Yuasa M, Miyashita C, Kobayashi S, Araki A, et al. Association of maternal serum concentration of hydroxylated polychlorinated biphenyls with maternal and neonatal thyroid hormones: The Hokkaido Birth Cohort Study. Environ Res. 2018;167:583–90.

    Article  CAS  PubMed  Google Scholar 

  52. Wang SL, Su PH, Jong SB, Guo YL, Chou WL, Papke O. In utero exposure to dioxins and polychlorinated biphenyls and its relations to thyroid function and growth hormone in newborns. Environ Health Perspect. 2005;113(11):1645–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fromme H, Tittlemier SA, Volkel W, Wilhelm M, Twardella D. Perfluorinated compounds--exposure assessment for the general population in Western countries. Int J Hyg Environ Health. 2009;212(3):239–70.

    Article  CAS  PubMed  Google Scholar 

  54. Butenhoff JL, Olsen GW, Pfahles-Hutchens A. The applicability of biomonitoring data for perfluorooctanesulfonate to the environmental public health continuum. Environ Health Perspect. 2006;114(11):1776–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Calafat AM, Kuklenyik Z, Reidy JA, Caudill SP, Tully JS, Needham LL. Serum concentrations of 11 polyfluoroalkyl compounds in the U.S. population: data from the national health and nutrition examination survey (NHANES). Environ Sci Technol. 2007;41(7):2237–42.

    Article  CAS  PubMed  Google Scholar 

  56. Harada K, Koizumi A, Saito N, Inoue K, Yoshinaga T, Date C, et al. Historical and geographical aspects of the increasing perfluorooctanoate and perfluorooctane sulfonate contamination in human serum in Japan. Chemosphere. 2007;66(2):293–301.

    Article  CAS  PubMed  Google Scholar 

  57. Midasch O, Drexler H, Hart N, Beckmann MW, Angerer J. Transplacental exposure of neonates to perfluorooctanesulfonate and perfluorooctanoate: a pilot study. Int Arch Occup Environ Health. 2007;80(7):643–8.

    Article  CAS  PubMed  Google Scholar 

  58. Olsen GW, Zobel LR. Assessment of lipid, hepatic, and thyroid parameters with serum perfluorooctanoate (PFOA) concentrations in fluorochemical production workers. Int Arch Occup Environ Health. 2007;81(2):231–46.

    Article  CAS  PubMed  Google Scholar 

  59. Okada E, Kashino I, Matsuura H, Sasaki S, Miyashita C, Yamamoto J, et al. Temporal trends of perfluoroalkyl acids in plasma samples of pregnant women in Hokkaido, Japan, 2003-2011. Environ Int. 2013;60:89–96.

    Article  CAS  PubMed  Google Scholar 

  60. Gutzkow KB, Haug LS, Thomsen C, Sabaredzovic A, Becher G, Brunborg G. Placental transfer of perfluorinated compounds is selective–a Norwegian Mother and Child Sub-cohort Study. Int J Hyg Environ Health. 2012;215(2):216–9.

    Article  PubMed  CAS  Google Scholar 

  61. Inoue K, Okada F, Ito R, Kato S, Sasaki S, Nakajima S, et al. Perfluorooctane sulfonate (PFOS) and related perfluorinated compounds in human maternal and cord blood samples: assessment of PFOS exposure in a susceptible population during pregnancy. Environ Health Perspect. 2004;112(11):1204–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lee I, Viberg H. A single neonatal exposure to perfluorohexane sulfonate (PFHxS) affects the levels of important neuroproteins in the developing mouse brain. Neurotoxicology. 2013;37:190–6.

    Article  CAS  PubMed  Google Scholar 

  63. Weiss JM, Andersson PL, Lamoree MH, Leonards PE, van Leeuwen SP, Hamers T. Competitive binding of poly- and perfluorinated compounds to the thyroid hormone transport protein transthyretin. Toxicol Sci. 2009;109(2):206–16.

    Article  CAS  PubMed  Google Scholar 

  64. Yu WG, Liu W, Jin YH. Effects of perfluorooctane sulfonate on rat thyroid hormone biosynthesis and metabolism. Environ Toxicol Chem. 2009;28(5):990–6.

    Article  CAS  PubMed  Google Scholar 

  65. Lau C, Thibodeaux JR, Hanson RG, Rogers JM, Grey BE, Stanton ME, et al. Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. II: postnatal evaluation. Toxicol Sci. 2003;74(2):382–92.

    Article  CAS  PubMed  Google Scholar 

  66. Luebker DJ, York RG, Hansen KJ, Moore JA, Butenhoff JL. Neonatal mortality from in utero exposure to perfluorooctanesulfonate (PFOS) in Sprague-Dawley rats: dose-response, and biochemical and pharamacokinetic parameters. Toxicology. 2005;215(1-2):149–69.

    Article  CAS  PubMed  Google Scholar 

  67. Yu WG, Liu W, Jin YH, Liu XH, Wang FQ, Liu L, et al. Prenatal and postnatal impact of perfluorooctane sulfonate (PFOS) on rat development: a cross-foster study on chemical burden and thyroid hormone system. Environ Sci Technol. 2009;43(21):8416–22.

    Article  CAS  PubMed  Google Scholar 

  68. Thibodeaux JR, Hanson RG, Rogers JM, Grey BE, Barbee BD, Richards JH, et al. Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse I: maternal and prenatal evaluations. Toxicol Sci. 2003;74(2):369–81.

    Article  CAS  PubMed  Google Scholar 

  69. Kim S, Choi K, Ji K, Seo J, Kho Y, Park J, et al. Trans-placental transfer of thirteen perfluorinated compounds and relations with fetal thyroid hormones. Environ Sci Technol. 2011;45(17):7465–72.

    Article  CAS  PubMed  Google Scholar 

  70. Preston EV, Webster TF, Oken E, Claus Henn B, McClean MD, Rifas-Shiman SL, et al. Maternal plasma per- and polyfluoroalkyl substance concentrations in early pregnancy and maternal and neonatal thyroid function in a prospective birth cohort: project viva (USA). Environ Health Perspect. 2018;126(2):027013.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Tsai MS, Lin CC, Chen MH, Hsieh WS, Chen PC. Perfluoroalkyl substances and thyroid hormones in cord blood. Environ Pollut. 2017;222:543–8.

    Article  CAS  PubMed  Google Scholar 

  72. Wang Y, Rogan WJ, Chen PC, Lien GW, Chen HY, Tseng YC, et al. Association between maternal serum perfluoroalkyl substances during pregnancy and maternal and cord thyroid hormones: Taiwan Maternal and Infant Cohort Study. Environ Health Perspect. 2014;122(5):529–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kato S, Itoh S, Yuasa M, Baba T, Miyashita C, Sasaki S, et al. Association of perfluorinated chemical exposure in utero with maternal and infant thyroid hormone levels in the Sapporo cohort of Hokkaido Study on the Environment and Children’s Health. Environ Health Prev Med. 2016;21(5):334–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shah-Kulkarni S, Kim BM, Hong YC, Kim HS, Kwon EJ, Park H, et al. Prenatal exposure to perfluorinated compounds affects thyroid hormone levels in newborn girls. Environ Int. 2016;94:607–13.

    Article  CAS  PubMed  Google Scholar 

  75. Hooper K, McDonald TA. The PBDEs: an emerging environmental challenge and another reason for breast-milk monitoring programs. Environ Health Perspect. 2000;108(5):387–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ren XM, Guo LH. Assessment of the binding of hydroxylated polybrominated diphenyl ethers to thyroid hormone transport proteins using a site-specific fluorescence probe. Environ Sci Technol. 2012;46(8):4633–40.

    Article  CAS  PubMed  Google Scholar 

  77. Cao J, Lin Y, Guo LH, Zhang AQ, Wei Y, Yang Y. Structure-based investigation on the binding interaction of hydroxylated polybrominated diphenyl ethers with thyroxine transport proteins. Toxicology. 2010;277(1-3):20–8.

    Article  CAS  PubMed  Google Scholar 

  78. Kitamura S, Kato T, Iida M, Jinno N, Suzuki T, Ohta S, et al. Anti-thyroid hormonal activity of tetrabromobisphenol A, a flame retardant, and related compounds: affinity to the mammalian thyroid hormone receptor, and effect on tadpole metamorphosis. Life Sci. 2005;76(14):1589–601.

    Article  CAS  PubMed  Google Scholar 

  79. Fini JB, Le Mevel S, Turque N, Palmier K, Zalko D, Cravedi JP, et al. An in vivo multiwell-based fluorescent screen for monitoring vertebrate thyroid hormone disruption. Environ Sci Technol. 2007;41(16):5908–14.

    Article  CAS  PubMed  Google Scholar 

  80. Han Z, Li Y, Zhang S, Song N, Xu H, Dang Y, et al. Prenatal transfer of decabromodiphenyl ether (BDE-209) results in disruption of the thyroid system and developmental toxicity in zebrafish offspring. Aquat Toxicol. 2017;190:46–52.

    Article  CAS  PubMed  Google Scholar 

  81. Szabo DT, Richardson VM, Ross DG, Diliberto JJ, Kodavanti PR, Birnbaum LS. Effects of perinatal PBDE exposure on hepatic phase I, phase II, phase III, and deiodinase 1 gene expression involved in thyroid hormone metabolism in male rat pups. Toxicol Sci. 2009;107(1):27–39.

    Article  CAS  PubMed  Google Scholar 

  82. Hoffman K, Sosa JA, Stapleton HM. Do flame retardant chemicals increase the risk for thyroid dysregulation and cancer? Curr Opin Oncol. 2017;29(1):7–13.

    Article  CAS  PubMed  Google Scholar 

  83. Lin SM, Chen FA, Huang YF, Hsing LL, Chen LL, Wu LS, et al. Negative associations between PBDE levels and thyroid hormones in cord blood. Int J Hyg Environ Health. 2011;214(2):115–20.

    Article  CAS  PubMed  Google Scholar 

  84. Vuong AM, Webster GM, Romano ME, Braun JM, Zoeller RT, Hoofnagle AN, et al. Maternal polybrominated diphenyl ether (PBDE) exposure and thyroid hormones in maternal and cord sera: the home study, Cincinnati, USA. Environ Health Perspect. 2015;123(10):1079–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ding G, Yu J, Chen L, Wang C, Zhou Y, Hu Y, et al. Polybrominated diphenyl ethers (PBDEs) and thyroid hormones in cord blood. Environ Pollut. 2017;229:489–95.

    Article  CAS  PubMed  Google Scholar 

  86. Leonetti C, Butt CM, Hoffman K, Hammel SC, Miranda ML, Stapleton HM. Brominated flame retardants in placental tissues: associations with infant sex and thyroid hormone endpoints. Environ Health. 2016;15(1):113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Kim S, Park J, Kim HJ, Lee JJ, Choi G, Choi S, et al. Association between several persistent organic pollutants and thyroid hormone levels in cord blood serum and bloodspot of the Newborn Infants of Korea. PLoS One. 2015;10(5):e0125213.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Chevrier J, Harley KG, Bradman A, Sjodin A, Eskenazi B. Prenatal exposure to polybrominated diphenyl ether flame retardants and neonatal thyroid-stimulating hormone levels in the CHAMACOS study. Am J Epidemiol. 2011;174(10):1166–74.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Kim TH, Lee YJ, Lee E, Patra N, Lee J, Kwack SJ, et al. Exposure assessment of polybrominated diphenyl ethers (PBDE) in umbilical cord blood of Korean infants. J Toxicol Environ Health Part A. 2009;72(21–22):1318–26.

    Article  CAS  Google Scholar 

  90. Lupton SJ, McGarrigle BP, Olson JR, Wood TD, Aga DS. Human liver microsome-mediated metabolism of brominated diphenyl ethers 47, 99, and 153 and identification of their major metabolites. Chem Res Toxicol. 2009;22(11):1802–9.

    Article  CAS  PubMed  Google Scholar 

  91. Ishihara A, Nishiyama N, Sugiyama S, Yamauchi K. The effect of endocrine disrupting chemicals on thyroid hormone binding to Japanese quail transthyretin and thyroid hormone receptor. Gen Comp Endocrinol. 2003;134(1):36–43.

    Article  CAS  PubMed  Google Scholar 

  92. Poon R, Lecavalier P, Mueller R, Valli VE, Procter BG, Chu I. Subchronic oral toxicity of di-n-octyl phthalate and di(2-Ethylhexyl) phthalate in the rat. Food Chem Toxicol. 1997;35(2):225–39.

    Article  CAS  PubMed  Google Scholar 

  93. Howarth JA, Price SC, Dobrota M, Kentish PA, Hinton RH. Effects on male rats of di-(2-ethylhexyl) phthalate and di-n-hexylphthalate administered alone or in combination. Toxicol Lett. 2001;121(1):35–43.

    Article  CAS  PubMed  Google Scholar 

  94. Breous E, Wenzel A, Loos U. The promoter of the human sodium/iodide symporter responds to certain phthalate plasticisers. Mol Cell Endocrinol. 2005;244(1-2):75–8.

    Article  CAS  PubMed  Google Scholar 

  95. Wenzel A, Franz C, Breous E, Loos U. Modulation of iodide uptake by dialkyl phthalate plasticisers in FRTL-5 rat thyroid follicular cells. Mol Cell Endocrinol. 2005;244(1-2):63–71.

    Article  CAS  PubMed  Google Scholar 

  96. Zhai W, Huang Z, Chen L, Feng C, Li B, Li T. Thyroid endocrine disruption in zebrafish larvae after exposure to mono-(2-ethylhexyl) phthalate (MEHP). PLoS One. 2014;9(3):e92465.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Sugiyama S, Shimada N, Miyoshi H, Yamauchi K. Detection of thyroid system-disrupting chemicals using in vitro and in vivo screening assays in Xenopus laevis. Toxicol Sci. 2005;88(2):367–74.

    Article  CAS  PubMed  Google Scholar 

  98. Sun D, Zhou L, Wang S, Liu T, Zhu J, Jia Y, et al. Effect of Di-(2-ethylhexyl) phthalate on the hypothalamus-pituitary-thyroid axis in adolescent rat. Endocr J. 2018;65(3):261–8.

    Article  PubMed  Google Scholar 

  99. Liu C, Zhao L, Wei L, Li L. DEHP reduces thyroid hormones via interacting with hormone synthesis-related proteins, deiodinases, transthyretin, receptors, and hepatic enzymes in rats. Environ Sci Pollut Res Int. 2015;22(16):12711–9.

    Article  CAS  PubMed  Google Scholar 

  100. Huang HB, Kuo PL, Chang JW, Jaakkola JJK, Liao KW, Huang PC. Longitudinal assessment of prenatal phthalate exposure on serum and cord thyroid hormones homeostasis during pregnancy - Tainan birth cohort study (TBCS). Sci Total Environ. 2018;619-620:1058–65.

    Article  CAS  PubMed  Google Scholar 

  101. Kuo FC, Su SW, Wu CF, Huang MC, Shiea J, Chen BH, et al. Relationship of urinary phthalate metabolites with serum thyroid hormones in pregnant women and their newborns: a prospective birth cohort in Taiwan. PLoS One. 2015;10(6):e0123884.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Minatoya M, Naka Jima S, Sasaki S, Araki A, Miyashita C, Ikeno T, et al. Effects of prenatal phthalate exposure on thyroid hormone levels, mental and psychomotor development of infants: The Hokkaido Study on Environment and Children’s Health. Sci Total Environ. 2016;565:1037–43.

    Article  CAS  PubMed  Google Scholar 

  103. Yao HY, Han Y, Gao H, Huang K, Ge X, Xu YY, et al. Maternal phthalate exposure during the first trimester and serum thyroid hormones in pregnant women and their newborns. Chemosphere. 2016;157:42–8.

    Article  CAS  PubMed  Google Scholar 

  104. Chevrier J, Gunier RB, Bradman A, Holland NT, Calafat AM, Eskenazi B, et al. Maternal urinary bisphenol a during pregnancy and maternal and neonatal thyroid function in the CHAMACOS study. Environ Health Perspect. 2013;121(1):138–44.

    Article  PubMed  CAS  Google Scholar 

  105. Romano ME, Webster GM, Vuong AM, Thomas Zoeller R, Chen A, Hoofnagle AN, et al. Gestational urinary bisphenol A and maternal and newborn thyroid hormone concentrations: the HOME Study. Environ Res. 2015;138:453–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Minatoya M, Araki A, Nakajima S, Sasaki S, Miyashita C, Yamazaki K, et al. Cord blood BPA level and child neurodevelopment and behavioral problems: The Hokkaido Study on Environment and Children’s Health. Sci Total Environ. 2017;607-608:351–6.

    Article  CAS  PubMed  Google Scholar 

  107. Kudo Y, Yamauchi K. In vitro and in vivo analysis of the thyroid disrupting activities of phenolic and phenol compounds in Xenopus laevis. Toxicol Sci. 2005;84(1):29–37.

    Article  CAS  PubMed  Google Scholar 

  108. Marchesini GR, Meimaridou A, Haasnoot W, Meulenberg E, Albertus F, Mizuguchi M, et al. Biosensor discovery of thyroxine transport disrupting chemicals. Toxicol Appl Pharmacol. 2008;232(1):150–60.

    Article  CAS  PubMed  Google Scholar 

  109. Moriyama K, Tagami T, Akamizu T, Usui T, Saijo M, Kanamoto N, et al. Thyroid hormone action is disrupted by bisphenol A as an antagonist. J Clin Endocrinol Metab. 2002;87(11):5185–90.

    Article  CAS  PubMed  Google Scholar 

  110. Zoeller RT, Bansal R, Parris C. Bisphenol-A, an environmental contaminant that acts as a thyroid hormone receptor antagonist in vitro, increases serum thyroxine, and alters RC3/neurogranin expression in the developing rat brain. Endocrinology. 2005;146(2):607–12.

    Article  CAS  PubMed  Google Scholar 

  111. Seiwa C, Nakahara J, Komiyama T, Katsu Y, Iguchi T, Asou H. Bisphenol A exerts thyroid-hormone-like effects on mouse oligodendrocyte precursor cells. Neuroendocrinology. 2004;80(1):21–30.

    Article  CAS  PubMed  Google Scholar 

  112. Nakamura K, Itoh K, Yaoi T, Fujiwara Y, Sugimoto T, Fushiki S. Murine neocortical histogenesis is perturbed by prenatal exposure to low doses of Bisphenol A. J Neurosci Res. 2006;84(6):1197–205.

    Article  CAS  PubMed  Google Scholar 

  113. Lee S, Kim C, Youn H, Choi K. Thyroid hormone disrupting potentials of bisphenol A and its analogues - in vitro comparison study employing rat pituitary (GH3) and thyroid follicular (FRTL-5) cells. Toxicol In Vitro. 2017;40:297–304.

    Article  CAS  PubMed  Google Scholar 

  114. Nieminen P, Lindstrom-Seppa P, Juntunen M, Asikainen J, Mustonen AM, Karonen SL, et al. In vivo effects of bisphenol A on the polecat (mustela putorius). J Toxicol Environ Health A. 2002;65(13):933–45.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported in part by Grants-in-Aid for Scientific Research from the Japan Ministry of Health, Labour, and Welfare; and the Japan Agency for Medical Research and Development (AMED) under Grant Number JP18gk0110032.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachiko Itoh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Itoh, S. (2020). Thyroid Hormone System and Development. In: Kishi, R., Grandjean, P. (eds) Health Impacts of Developmental Exposure to Environmental Chemicals. Current Topics in Environmental Health and Preventive Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-15-0520-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0520-1_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0519-5

  • Online ISBN: 978-981-15-0520-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics