Skip to main content

Imaging of Intraocular Tumours

  • Chapter
  • First Online:
Intraocular Tumors

Abstract

Ophthalmology is a specialty that is very reliant on imaging, since the optically optimized structure of the eye lends itself easily to evaluation with photographic, optical and even ultrasound imaging. In ocular oncology, ophthalmologists have the advantage by and large over other cancer physicians of being able to visualize the tumour they are dealing with and to use imaging to record and diagnose the lesion, without always having to take a tissue biopsy. With ever improving resolution this has even led to the concept of the “optical biopsy” using the increasing resolution of optical coherence tomography. For some diagnoses, such as intraocular lymphoma, only a tissue biopsy will give a final diagnosis but in many disorders, the clinical and imaging features are sensitive predictors.

In the evaluation of intraocular and ocular surface tumours, the ocular oncologist is reliant on multimodality imaging techniques, including color photography, fluorescein (FFA) and indocyanine green (ICG) angiography, optical coherence tomography (OCT), optical coherence tomography angiography (OCTA), ultrasound and ultrasound biomicroscopy (UBM).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Peterson RC, Wolffsohn JS. The effect of digital image resolution and compression on anterior eye imaging. Br J Ophthalmol. 2005;89(7):828–30. https://doi.org/10.1136/bjo.2004.062240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shoughy SS, Arevalo JF, Kozak I. Update on wide- and ultra-widefield retinal imaging. Indian J Ophthalmol. 2015;63(7):575–81. https://doi.org/10.4103/0301-4738.167122.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Shields CL, Cater J, Shields JA, Singh AD, Santos MC, Carvalho C. Combination of clinical factors predictive of growth of small choroidal melanocytic tumors. Arch Ophthalmol. 2000;118(3):360–4.

    Article  CAS  Google Scholar 

  4. Reznicek L, Stumpf C, Seidensticker F, Kampik A, Neubauer AS, Kernt M. Role of wide-field autofluorescence imaging and scanning laser ophthalmoscopy in differentiation of choroidal pigmented lesions. Int J Ophthalmol. 2014;7(4):697–703. https://doi.org/10.3980/j.issn.2222-3959.2014.04.21.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sagong M, van Hemert J, Olmos de Koo LC, Barnett C, Sadda SR. Assessment of accuracy and precision of quantification of ultra-widefield images. Ophthalmology. 2015;122(4):864–6. https://doi.org/10.1016/j.ophtha.2014.11.016.

    Article  PubMed  Google Scholar 

  6. Wong JR, Tucker MA, Kleinerman RA, Devesa SS. Retinoblastoma incidence patterns in the US surveillance, epidemiology, and end results program. JAMA Ophthalmol. 2014;132(4):478–83. https://doi.org/10.1001/jamaophthalmol.2013.8001.

    Article  PubMed  Google Scholar 

  7. Kivela T. The epidemiological challenge of the most frequent eye cancer: retinoblastoma, an issue of birth and death. Br J Ophthalmol. 2009;93(9):1129–31. https://doi.org/10.1136/bjo.2008.150292.

    Article  PubMed  Google Scholar 

  8. Brubaker RF, Penniston JT, Grotte DA, Nagataki S. Measurement of fluorescein binding in human plasma using fluorescence polarization. Arch Ophthalmol. 1982;100(4):625–30.

    Article  CAS  Google Scholar 

  9. Herbort CP. Fluorescein and indocyanine green angiography for uveitis. Middle East Afr J Ophthalmol. 2009;16(4):168–87. https://doi.org/10.4103/0974-9233.58419.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ayyakkannu Manivannan AF. Instrumentation for fluorescein and indocyanine green angiography. In: Agrawal A, editor. Fundus fluorescein and indocyanine green angiography: a textbook and atlas. Thorofare: Slack; 2008.

    Google Scholar 

  11. Santosh Honavar MR, Shields CL, Shields JA. Intraocular tumours. In: Agrawal A, editor. Fundus fluorescein and indocyanine green angiography: a textbook and atlas. 1st ed. Thorofare: Slack; 2008.

    Google Scholar 

  12. Jerry A, Shields CLS. Posterior uveal melanoma: diagnostic approaches. In: Intraocular tumors: an atlas and textbook. 3rd ed. Philadelphia: LWW; 2016.

    Google Scholar 

  13. Heimann H, Jmor F, Damato B. Imaging of retinal and choroidal vascular tumours. Eye. 2013;27(2):208–16. https://doi.org/10.1038/eye.2012.251.

    Article  CAS  PubMed  Google Scholar 

  14. Schalenbourg A, Piguet B, Zografos L. Indocyanine green angiographic findings in choroidal hemangiomas: a study of 75 cases. Ophthalmologica. 2000;214(4):246–52. https://doi.org/10.1159/000027499.

    Article  CAS  PubMed  Google Scholar 

  15. Norton EW, Gutman F. Fluorescein angiography and hemangiomas of the choroid. Arch Ophthalmol. 1967;78(2):121–5.

    Article  CAS  Google Scholar 

  16. Arun D, Singh PAR, Rennie IG. Retinal vascular tumors. In: Arun D, Singh BD, editors. Clinical ophthalmic oncology: retinal tumours. 2nd ed. Heidelberg: Springer; 2014. p. 17–344.

    Google Scholar 

  17. Tsui I, Jain A, Shah S, Schwartz SD, McCannel TA. Ultra widefield imaging of peripheral exudative hemorrhagic chorioretinopathy. Semin Ophthalmol. 2009;24(1):25–8. https://doi.org/10.1080/08820530802520178.

    Article  PubMed  Google Scholar 

  18. Hope-Ross MW. ICG dye: physical and pharmacologic properties. In: Lawrence A, Yannuzzi RWF, Slakter JS, editors. Indocyanine green angiography. 1st ed. St. Louis: Mosby; 1997. p. 46–9.

    Google Scholar 

  19. Shields CL, Shields JA, De Potter P. Patterns of indocyanine green videoangiography of choroidal tumours. Br J Ophthalmol. 1995;79(3):237–45.

    Article  CAS  Google Scholar 

  20. Shields CL. Chapter 21: clinical evaluation of choroidal tumors. In: Yannuzzi, editor. Indocyanine green angiography. 1st ed. St. Louis: Mosby; 1997.

    Google Scholar 

  21. Mueller AJ, Freeman WR, Schaller UC, Kampik A, Folberg R. Complex microcirculation patterns detected by confocal indocyanine green angiography predict time to growth of small choroidal melanocytic tumors: MuSIC Report II. Ophthalmology. 2002;109(12):2207–14.

    Article  Google Scholar 

  22. Shields CL, Bianciotto C, Pirondini C, Materin MA, Harmon SA, Shields JA. Autofluorescence of orange pigment overlying small choroidal melanoma. Retina. 2007;27(8):1107–11. https://doi.org/10.1097/IAE.0b013e31814934ef.

    Article  PubMed  Google Scholar 

  23. Dorey CK, Wu G, Ebenstein D, Garsd A, Weiter JJ. Cell loss in the aging retina. Relationship to lipofuscin accumulation and macular degeneration. Invest Ophthalmol Vis Sci. 1989;30(8):1691–9.

    CAS  PubMed  Google Scholar 

  24. Delori FC, Fleckner MR, Goger DG, Weiter JJ, Dorey CK. Autofluorescence distribution associated with drusen in age-related macular degeneration. Invest Ophthalmol Vis Sci. 2000;41(2):496–504.

    CAS  PubMed  Google Scholar 

  25. Almeida A, Kaliki S, Shields CL. Autofluorescence of intraocular tumours. Curr Opin Ophthalmol. 2013;24(3):222–32. https://doi.org/10.1097/ICU.0b013e32835f8ba1.

    Article  PubMed  Google Scholar 

  26. Shields JA, Rodrigues MM, Sarin LK, Tasman WS, Annesley WH Jr. Lipofuscin pigment over benign and malignant choroidal tumors. Trans Sect Ophthalmol Am Acad Ophthalmol Otolaryngol. 1976;81(5):871–81.

    CAS  PubMed  Google Scholar 

  27. Shields CL, Pirondini C, Bianciotto C, Materin MA, Harmon SA, Shields JA. Autofluorescence of choroidal nevus in 64 cases. Retina. 2008;28(8):1035–43. https://doi.org/10.1097/IAE.0b013e318181b94b.

    Article  PubMed  Google Scholar 

  28. Spaide R. Autofluorescence from the outer retina and subretinal space: hypothesis and review. Retina. 2008;28(1):5–35. https://doi.org/10.1097/IAE.0b013e318158eca4.

    Article  PubMed  Google Scholar 

  29. Gunduz K, Pulido JS, Bakri SJ, Amselem L, Petit-Fond E, Link T. Fundus autofluorescence of choroidal melanocytic lesions and the effect of treatment. Trans Am Ophthalmol Soc. 2007;105:172–8.

    PubMed  PubMed Central  Google Scholar 

  30. Hashmi F, Rojanaporn D, Kaliki S, Shields CL. Orange pigment sediment overlying small choroidal melanoma. Arch Ophthalmol. 2012;130(7):937–9. https://doi.org/10.1001/archophthalmol.2011.1907.

    Article  PubMed  Google Scholar 

  31. Ishida T, Ohno-Matsui K, Kaneko Y, Tobita H, Hayashi K, Shimada N, et al. Autofluorescence of metastatic choroidal tumor. Int Ophthalmol. 2009;29(4):309–13. https://doi.org/10.1007/s10792-008-9234-2.

    Article  PubMed  Google Scholar 

  32. Collet LC, Pulido JS, Gunduz K, Diago T, McCannel C, Blodi C, et al. Fundus autofluorescence in choroidal metastatic lesions: a pilot study. Retina. 2008;28(9):1251–6. https://doi.org/10.1097/IAE.0b013e318188c7d0.

    Article  PubMed  Google Scholar 

  33. Natesh S, Chin KJ, Finger PT. Choroidal metastases fundus autofluorescence imaging: correlation to clinical, OCT, and fluorescein angiographic findings. Ophthalmic Surg Lasers Imaging. 2010;41(4):406–12. https://doi.org/10.3928/15428877-20100426-03.

    Article  PubMed  Google Scholar 

  34. Ramasubramanian A, Shields CL, Harmon SA, Shields JA. Autofluorescence of choroidal hemangioma in 34 consecutive eyes. Retina. 2010;30(1):16–22. https://doi.org/10.1097/IAE.0b013e3181bceedb.

    Article  PubMed  Google Scholar 

  35. Navajas EV, Costa RA, Calucci D, Hammoudi DS, Simpson ER, Altomare F. Multimodal fundus imaging in choroidal osteoma. Am J Ophthalmol. 2012;153(5):890–5. https://doi.org/10.1016/j.ajo.2011.10.025.

    Article  PubMed  Google Scholar 

  36. Ascaso FJ, Villen L. Fundus autofluorescence imaging findings in choroidal osteoma. Retina. 2011;31(5):1004–5. https://doi.org/10.1097/IAE.0b013e31820d37a6.

    Article  PubMed  Google Scholar 

  37. Ishida T, Ohno-Matsui K, Kaneko Y, Tobita H, Shimada N, Takase H, et al. Fundus autofluorescence patterns in eyes with primary intraocular lymphoma. Retina. 2010;30(1):23–32. https://doi.org/10.1097/IAE.0b013e3181b408a2.

    Article  PubMed  Google Scholar 

  38. Nyboer JH, Robertson DM, Gomez MR. Retinal lesions in tuberous sclerosis. Arch Ophthalmol. 1976;94(8):1277–80.

    Article  CAS  Google Scholar 

  39. Mennel S, Meyer CH, Eggarter F, Peter S. Autofluorescence and angiographic findings of retinal astrocytic hamartomas in tuberous sclerosis. Ophthalmologica. 2005;219(6):350–6. https://doi.org/10.1159/000088377.

    Article  PubMed  Google Scholar 

  40. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science. 1991;254(5035):1178–81.

    Article  CAS  Google Scholar 

  41. Torres VL, Brugnoni N, Kaiser PK, Singh AD. Optical coherence tomography enhanced depth imaging of choroidal tumors. Am J Ophthalmol. 2011;151(4):586–93. https://doi.org/10.1016/j.ajo.2010.09.028.

    Article  PubMed  Google Scholar 

  42. Shields CL, Manalac J, Das C, Saktanasate J, Shields JA. Review of spectral domain enhanced depth imaging optical coherence tomography of tumors of the choroid. Indian J Ophthalmol. 2015;63(2):117–21. https://doi.org/10.4103/0301-4738.154377.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bianciotto C, Shields CL, Guzman JM, Romanelli-Gobbi M, Mazzuca D Jr, Green WR, et al. Assessment of anterior segment tumors with ultrasound biomicroscopy versus anterior segment optical coherence tomography in 200 cases. Ophthalmology. 2011;118(7):1297–302. https://doi.org/10.1016/j.ophtha.2010.11.011.

    Article  PubMed  Google Scholar 

  44. Shields CL, Belinsky I, Romanelli-Gobbi M, Guzman JM, Mazzuca D Jr, Green WR, et al. Anterior segment optical coherence tomography of conjunctival nevus. Ophthalmology. 2011;118(5):915–9. https://doi.org/10.1016/j.ophtha.2010.09.016.

    Article  PubMed  Google Scholar 

  45. Bakri SJ, Singh AD, Lowder CY, Chalita MR, Li Y, Izatt JA, et al. Imaging of iris lesions with high-speed optical coherence tomography. Ophthalmic Surg Lasers Imaging. 2007;38(1):27–34.

    Article  Google Scholar 

  46. Sayanagi K, Pelayes DE, Kaiser PK, Singh AD. 3D Spectral domain optical coherence tomography findings in choroidal tumors. Eur J Ophthalmol. 2011;21(3):271–5. https://doi.org/10.5301/EJO.2010.5848.

    Article  PubMed  Google Scholar 

  47. Cennamo G, Romano MR, Breve MA, Velotti N, Reibaldi M, de Crecchio G, et al. Evaluation of choroidal tumors with optical coherence tomography: enhanced depth imaging and OCT-angiography features. Eye. 2017;31(6):906–15. https://doi.org/10.1038/eye.2017.14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Papastefanou VP, Nogueira V, Hay G, Andrews RM, Harris M, Cohen VM, et al. Choroidal naevi complicated by choroidal neovascular membrane and outer retinal tubulation. Br J Ophthalmol. 2013;97(8):1014–9. https://doi.org/10.1136/bjophthalmol-2013-303234.

    Article  PubMed  Google Scholar 

  49. Medina CA, Plesec T, Singh AD. Optical coherence tomography imaging of ocular and periocular tumours. Br J Ophthalmol. 2014;98(Suppl 2):ii40–6. https://doi.org/10.1136/bjophthalmol-2013-304299.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Shields CL, Honavar SG, Shields JA, Cater J, Demirci H. Circumscribed choroidal hemangioma: clinical manifestations and factors predictive of visual outcome in 200 consecutive cases. Ophthalmology. 2001;108(12):2237–48.

    Article  CAS  Google Scholar 

  51. Shields CL, Arepalli S, Pellegrini M, Mashayekhi A, Shields JA. Choroidal lymphoma shows calm, rippled, or undulating topography on enhanced depth imaging optical coherence tomography in 14 eyes. Retina. 2014;34(7):1347–53. https://doi.org/10.1097/IAE.0000000000000145.

    Article  PubMed  Google Scholar 

  52. Barry RJ, Tasiopoulou A, Murray PI, Patel PJ, Sagoo MS, Denniston AK, et al. Characteristic optical coherence tomography findings in patients with primary vitreoretinal lymphoma: a novel aid to early diagnosis. Br J Ophthalmol. 2018;102(10):1362–6. https://doi.org/10.1136/bjophthalmol-2017-311612.

    Article  PubMed  Google Scholar 

  53. Papastefanou VP, Pefkianaki M, Al Harby L, Arora AK, Cohen VM, Andrews RM, et al. Intravitreal bevacizumab monotherapy for choroidal neovascularisation secondary to choroidal osteoma. Eye. 2016;30(6):843–9. https://doi.org/10.1038/eye.2016.50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rootman DB, Gonzalez E, Mallipatna A, Vandenhoven C, Hampton L, Dimaras H, et al. Hand-held high-resolution spectral domain optical coherence tomography in retinoblastoma: clinical and morphologic considerations. Br J Ophthalmol. 2013;97(1):59–65. https://doi.org/10.1136/bjophthalmol-2012-302133.

    Article  PubMed  Google Scholar 

  55. Jia Y, Bailey ST, Hwang TS, McClintic SM, Gao SS, Pennesi ME, et al. Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye. Proc Natl Acad Sci U S A. 2015;112(18):E2395–402. https://doi.org/10.1073/pnas.1500185112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Spaide RF, Klancnik JM Jr, Cooney MJ. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol. 2015;133(1):45–50. https://doi.org/10.1001/jamaophthalmol.2014.3616.

    Article  PubMed  Google Scholar 

  57. Valverde-Megias A, Say EA, Ferenczy SR, Shields CL. Differential macular features on optical coherence tomography angiography in eyes with choroidal nevus and melanoma. Retina. 2017;37(4):731–40. https://doi.org/10.1097/IAE.0000000000001233.

    Article  PubMed  Google Scholar 

  58. Li Y, Say EA, Ferenczy S, Agni M, Shields CL. Altered parafoveal microvasculature in treatment-naive choroidal melanoma eyes detected by optical coherence tomography angiography. Retina. 2017;37(1):32–40. https://doi.org/10.1097/IAE.0000000000001242.

    Article  CAS  PubMed  Google Scholar 

  59. Shields CL, Say EA, Samara WA, Khoo CT, Mashayekhi A, Shields JA. Optical coherence tomography angiography of the macula after plaque radiotherapy of choroidal melanoma: comparison of irradiated versus nonirradiated eyes in 65 patients. Retina. 2016;36(8):1493–505. https://doi.org/10.1097/IAE.0000000000001021.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mandeep S. Sagoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sia, D., Al Jamal, R.T., Sagoo, M.S. (2020). Imaging of Intraocular Tumours. In: Khetan, V. (eds) Intraocular Tumors. Springer, Singapore. https://doi.org/10.1007/978-981-15-0395-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0395-5_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0394-8

  • Online ISBN: 978-981-15-0395-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics