Skip to main content

Complex Burgers Equation: A Probabilistic Perspective

  • Conference paper
  • First Online:
Sojourns in Probability Theory and Statistical Physics - I

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 298))

Abstract

In 1997 Yves LeJan and Alain-Sol Sznitman provided a probabilistic gateway in the form of a stochastic cascade model for the treatment of 3d incompressible, Navier–Stokes equations in free space. The equations themselves are noteworthy for the inherent mathematical challenges that they pose to proving existence, uniqueness and regularity of solutions. The main goal of the present article is to illustrate and explore the LeJan–Sznitman cascade in the context of a simpler quasi-linear pde, namely the complex Burgers equation. In addition to providing some unexpected results about these equations, consideration of mean-field models suggests analysis of branching random walks having naturally imposed time delays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The reference to “doodle” is deliberate. Once, when asked how he discovered his central limit theorem for associated random variables given in [43], Chuck replied that he had expected for some time that a central limit theorem should be possible for ferromagnetic Ising models at high temperatures as a consequence of correlation decay: “Then, one day I was doodling with the FKG inequalities and out popped just the right correlation inequalities for the characteristic function of the magnetization”. This would prove that central limit theorem.

  2. 2.

    The mean-field models for the Navier–Stokes equation, on the other hand, involve parameters \(\beta >1\) as well; see [15] in this regard.

  3. 3.

    An unfortunate typo occurs in the Appendix to [13] in which the explosion event should be denoted \([\zeta <\infty ]\), not \([\zeta =\infty ]\).

  4. 4.

    Another closely related Markov evolution that takes place in the sequence space \(\ell _1\) is given in [14].

  5. 5.

    The explosion problem for the self-similar LJS-cascade has been resolved in [16], where it has been shown that indeed explosion occurs.

References

  1. Aldous, D.J.: Stochastic models and descriptive statistics for phylogenetic trees, from Yule to today. Stat. Sci. 16(1), 23–34 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Athreya, K.: Discounted branching random walks. Adv. Appl. Probab. 17(1), 53–66 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bass, R.F.: Probabilistic Techniques in Analysis. Springer, New York (1995)

    MATH  Google Scholar 

  4. Bhattacharya, R., Chen, L., Dobson, S., Guenther, R., Orum, C., Ossiander, M., Thomann, E., Waymire, E.: Majorizing kernels and stochastic cascades with applications to incompressible Navier–Stokes equations. Trans. Am. Math. Soc. 355(12), 5003–5040 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Biggins, J.D.: Uniform convergence of martingales in the branching random walk. Ann. Probab. 20(1), 137–151 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cannone, M.: Harmonic analysis tools for solving the incompressible Navier–Stokes equations. In: Handbook of Mathematical Fluid Dynamics, vol. 3, pp. 161–244 (2004)

    Google Scholar 

  7. Cao, Y., Titi, E.S.: On the rate of convergence of the two-dimensional \(\alpha \)-models of turbulence to the Navier–Stokes equations. Numer. Funct. Anal. Optim. 30(11–12), 1231–1271 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chauvin, B., Klein, T., Marckert, J.F., Rouault, A.: Martingales and profile of binary search trees. Electron. J. Probab. 10(12), 420–435 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, L., Guenther, R.B., Kim, S.C., Thomann, E.A., Waymire, E.C.: A rate of convergence for the LANS-\(\alpha \) regularization of Navier–Stokes equations. J. Math. Anal. Appl. 348(2), 637–649 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chorin, A.J.: Numerical study of slightly viscous flow. J. Fluid Mech. 57(04), 785–796 (1973)

    Article  MathSciNet  Google Scholar 

  11. Constantin, P., Iyer, G.: A stochastic Lagrangian representation of the three-dimensional incompressible Navier–Stokes equations. Commun. Pure Appl. Math. 61(3), 330–345 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Constantin, P., Iyer, G.: A stochastic-Lagrangian approach to the Navier–Stokes equations in domains with boundary. Ann. Appl. Probab. 21(4), 1466–1492 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dascaliuc, R., Michalowski, N., Thomann, E., Waymire, E.C.: Symmetry breaking and uniqueness for the incompressible Navier–Stokes equations. Chaos Interdiscip. J. Nonlinear Sci. 25(7), 075402 (2015)

    Google Scholar 

  14. Dascaliuc, R., Michalowski, N., Thomann, E., Waymire, E.C.: A delayed Yule process. Proc. Am. Math. Soc. 146, 1335–1346 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dascaliuc, R., Thomann, E., Waymire, E.C.: Stochastic explosion and non-uniqueness for an \(\alpha \)-Riccati equation. J. Math. Anal. Appl. 476, 53–85 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dascaliuc, R., Thomann, E., Waymire, E.C.: Stochastic explosion in the self-similar Le Jan–Sznitman cascade associated to the 3D Navier–Stokes equation. Preprint (2018)

    Google Scholar 

  17. Dey, P., Waymire, E.: On normalized multiplicative cascades under strong disorder. Electron. Commun. Probab. 20 (2015)

    Google Scholar 

  18. Erickson, K.B.: Uniqueness of the null solution to a nonlinear partial differential equation satisfied by the explosion probability of a branching diffusion. J. Appl. Probab. 53(3), 938–945 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fefferman, C.L.: Existence and smoothness of the Navier–Stokes equation. Millenn. Prize. Probl. 57–67 (2006)

    Google Scholar 

  20. Foias, C.: Statistical study of Navier–Stokes equations. I. Rend. Sem. Mat. Univ. Padova 48, 219–348 (1972)

    MathSciNet  MATH  Google Scholar 

  21. Foias, C.: Statistical study of Navier–Stokes equations. II. Rend. Sem. Mat. Univ. Padova 49, 9–123 (1973)

    MATH  Google Scholar 

  22. Foias, C., Rosa, R.M.S., Temam, R.: Properties of time-dependent statistical solutions of the three-dimensional Navier–Stokes equations. Annales de l’institut Fourier 63(6), 2515–2573 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fujita, H., Watanabe, S.: On the uniqueness and non-uniqueness of solutions of initial value problems for some quasi-linear parabolic equations. Commun. Pure Appl. Math. 21(6), 631–652 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gal, C.G., Goldstein, J.A.: Evolution Equations with a Complex Spatial Variable. World Scientific Publishing, Singapore (2014)

    Book  MATH  Google Scholar 

  25. Goodman, J.: Convergence of the random vortex method. Commun. Pure Appl. Math. 40(2), 189–220 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  26. Grill, K.: The range of simple branching random walk. Stat. Probab. Lett. 26(3), 213–218 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hopf, E.: Statistical hydromechanics and functional calculus. J. Rat. Mech. Anal. 1(1), 87–123 (1952)

    MathSciNet  MATH  Google Scholar 

  28. Hu, Y., Shi, Z.: Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees. Ann. Probab. 37(2), 742–789 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ikeda, N., Nagasawa, M., Watanabe, S.: Branching Markov processes I. J. Math. Kyoto Univ. 8(2), 233–278 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ikeda, N., Nagasawa, M., Watanabe, S.: Branching Markov processes II. J. Math. Kyoto Univ. 8(3), 365–410 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ikeda, N., Nagasawa, M., Watanabe, S., et al.: Branching Markov processes III. J. Math. Kyoto Univ. 9(1), 95–160 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  32. ItĂ´, K., Henry Jr., P., et al.: Diffusion Processes and Their Sample Paths. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  33. Iyer, G.: A stochastic Lagrangian formulation of the incompressible Navier-Stokes and related transport equations. ProQuest LLC, Ann Arbor, MI (2006). Thesis Ph.D.–The University of Chicago

    Google Scholar 

  34. Iyer, G.: A stochastic perturbation of inviscid flows. Commun. Math. Phys. 266(3), 631–645 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Johnson, T.: On the support of the simple branching random walk. Stat. Probab. Lett. 91, 107–109 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kendall, D.G.: Branching processes since 1873. J. Lond. Math. Soc. 1(1), 385–406 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  37. Le Jan, Y., Sznitman, A.: Stochastic cascades and 3-dimensional Navier–Stokes equations. Probab. Theory Relat. Fields 109(3), 343–366 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  38. Li, D., Sinai, Y.G.: Complex singularities of solutions of some 1D hydrodynamic models. Physica D 237, 1945–1950 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Li, L.: Isolated singularities of the 1D complex viscous Burgers equation. J. Dyn. Differ. Equ. 21, 623–630 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Linshiz, J.S., Titi, E.S.: Analytical study of certain magnetohydrodynamic-alpha models. Preprint arXiv:math/0606603 (2006)

  41. Monin, A.S., Yaglom, A.M.: Statistical Fluid Mechanic: Mechanics of Turbulence. MIT Press, Cambridge (1975)

    Google Scholar 

  42. Newman, C.M.: Fourier transforms with only real zeros. Proc. Am. Math. Soc. 61(2), 245–251 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  43. Newman, C.M.: Normal fluctuations and the FKG inequalities. Commun. Math. Phys. 74(2), 119–128 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  44. Newman, C.M.: Percolation theory: a selective survey of rigorous results. Appendix. shock waves and mean field bounds: Concavity and analyticity of the magnetization at low temperature. In: Advances in Multiphase Flow and Related Problems, pp. 147–167 (1986)

    Google Scholar 

  45. Odlyzko, A.M.: An improved bound for the de Bruijn–Newman constant. Numer. Algorithms 25(1–4), 293–303 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  46. Pittel, B.: On growing random binary trees. J. Math. Anal. Appl. 103(2), 461–480 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  47. Poláčik, P., Šverák, V.: Zeros of complex caloric functions and singularities of complex viscous Burgers equation. J. reine angew. Math. 616, 205–217 (2008)

    MathSciNet  MATH  Google Scholar 

  48. Ramirez, J.M.: Multiplicative cascades applied to pdes (two numerical examples). J. Comput. Phys. 214(1), 122–136 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  49. Roberts, M.I.: Almost sure asymptotics for the random binary search tree. Preprint arXiv:1002.3896 (2010)

  50. Ruelle, D.: Measures describing a turbulent flow. Ann. N. Y. Acad. Sci. 357(1), 1–9 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  51. Sawyer, S.A.: A formula for semigroups, with an application to branching diffusion processes. Trans. Am. Math. Soc. 152(1), 1–38 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  52. Sinai, Y.: Power series for solutions of the 3D-Navier–Stokes system on \(r^3\). J. Stat. Phys. 121(5), 779–803 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  53. Skorokhod, A.V.: Branching diffusion processes. Theory Probab. Appl. 9(3), 445–449 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  54. Thomann, E.A., Guenther, R.B.: The fundamental solution of the linearized Navier–Stokes equations for spinning bodies in three spatial dimensions-time dependent case. J. Math. Fluid Mech. 8(1), 77–98 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  55. Višik, M.I., Fursikov, A.V.: Matematicheskie zadachi statisticheskoi gidromekhaniki. “Nauka”, Moscow (1980)

    Google Scholar 

  56. Waymire, E.C.: Probability & incompressible Navier–Stokes equations: an overview of some recent developments. Probab. Surv. 2, 1–32 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  57. Weisstein, E.W.: Tree searching. MathWorld–A Wolfram Web Resource (2016). http://mathworld.wolfram.com/TreeSearching.html

Download references

Acknowledgments

This work was partially supported by grants DMS-1408947, DMS-1408939, DMS-1211413, and DMS-1516487 from the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward C. Waymire .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dascaliuc, R., Michalowski, N., Thomann, E., Waymire, E.C. (2019). Complex Burgers Equation: A Probabilistic Perspective. In: Sidoravicius, V. (eds) Sojourns in Probability Theory and Statistical Physics - I. Springer Proceedings in Mathematics & Statistics, vol 298. Springer, Singapore. https://doi.org/10.1007/978-981-15-0294-1_6

Download citation

Publish with us

Policies and ethics