Skip to main content

Sex Bias in Systemic Lupus Erythematosus and Sjögren’s Syndrome

  • Chapter
  • First Online:
Women's Health in Autoimmune Diseases

Abstract

Systemic lupus erythematosus (SLE) is an autoimmune disease with protean manifestations in both clinical and immunological domains. Sjögren’s syndrome is another rheumatic, inflammatory autoimmune disease that is related to SLE at the level of clinical and serological manifestations as well as underlying pathophysiological mechanisms. For both diseases there are clearly genetic and environmental contributions to the risk of disease, but the etiology is largely undefined. Both SLE and Sjögren’s syndrome predominately affect women compared to men at a ratio of at least 10:1. The mechanism by which female-bias is mediated has not been fully elucidated. Sex steroids, estrogens and androgens, do not differ between SLE patients and controls with another chronic disease. Elevated levels of prolactin are found in the sera of some women with either SLE or Sjögren’s syndrome, but a cause and effect relationship is not established. The transcription factor vestigial-like family member 3 (VGLL3) may regulate sex-biased gene expression in a way that promotes autoimmunity. The X chromosome aneuploidies 47,XXY and 47,XXX are found in excess among men and women, respectively, with SLE or Sjögren’s syndrome. X chromosome genes that escape X inactivation, such as TLR7 and CXorf21, may mediate the X chromosome dose effect found in these diseases through effects of TLR7 signaling. Other X chromosome abnormalities including acquired X monosomy and skewed inactivation have not been found in SLE. The theory that genes escaping from X inactivation leads to increased intracellular protein concentration and subsequently to autoimmunity is untested. Thus, relatively new research has identified pathways other than sex hormones for female sex bias in these diseases. There may in fact be more than one mechanism by which autoimmune disease affects mostly women.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Libman E, Sacks B (1924) A hitherto undescribed form of valvular and mural endocarditis. Arch Intern Med 33(6):701–737

    Google Scholar 

  2. Kaposi M (1875) Lupus eythematosus. In: Hebra F (ed) On diseases of the skin including the exanthemata IV. The New Syndenham Society, London, pp 14–35

    Google Scholar 

  3. Kurien BT, Scofield RH (2006) Autoantibody determination in the diagnosis of systemic lupus erythematosus. Scand J Immunol 64(3):227–235

    CAS  PubMed  Google Scholar 

  4. Borchers AT, Naguwa SM, Shoenfeld Y, Gershwin ME (2010) The geoepidemiology of systemic lupus erythematosus. Autoimmun Rev 9(5):A277–A287

    CAS  PubMed  Google Scholar 

  5. Dall’Era M, Cisternas MG, Snipes K, Herrinton LJ, Gordon C, Helmick CG (2017) The incidence and prevalence of systemic lupus erythematosus in San Francisco County, California: the California Lupus Surveillance Project. Arthritis Rheumatol (Hoboken, NJ) 69(10):1996–2005

    Google Scholar 

  6. Lim SS, Drenkard C (2015) Epidemiology of lupus: an update. Curr Opin Rheumatol 27(5):427–432

    PubMed  Google Scholar 

  7. Costa-Reis P, Sullivan KE (2017) Monogenic lupus: it’s all new! Curr Opin Immunol 49:87–95

    CAS  Google Scholar 

  8. McClain MT, Heinlen LD, Dennis GJ, Roebuck J, Harley JB, James JA (2005) Early events in lupus humoral autoimmunity suggest initiation through molecular mimicry. Nat Med 11(1):85–89

    CAS  PubMed  Google Scholar 

  9. James JA, Robertson JM (2012) Lupus and Epstein-Barr. Curr Opin Rheumatol 24(4):383–388

    CAS  PubMed  PubMed Central  Google Scholar 

  10. James JA, Neas BR, Moser KL, Hall T, Bruner GR, Sestak AL et al (2001) Systemic lupus erythematosus in adults is associated with previous Epstein-Barr virus exposure. Arthritis Rheum 44(5):1122–1126

    CAS  PubMed  Google Scholar 

  11. James JA, Kaufman KM, Farris AD, Taylor-Albert E, Lehman TJ, Harley JB (1997) An increased prevalence of Epstein-Barr virus infection in young patients suggests a possible etiology for systemic lupus erythematosus. J Clin Invest 100(12):3019–3026

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Harley JB, Chen X, Pujato M, Miller D, Maddox A, Forney C et al (2018) Transcription factors operate across disease loci, with EBNA2 implicated in autoimmunity. Nat Genet 50(5):699–707

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Block SR (2006) A brief history of twins. Lupus 15(2):61–64

    CAS  PubMed  Google Scholar 

  14. Saeed M (2017) Lupus pathobiology based on genomics. Immunogenetics 69(1):1–12

    CAS  PubMed  Google Scholar 

  15. Crowl JT, Gray EE, Pestal K, Volkman HE, Stetson DB (2017) Intracellular nucleic acid detection in autoimmunity. Annu Rev Immunol 35:313–336

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Magna M, Pisetsky DS (2015) The role of cell death in the pathogenesis of SLE: is pyroptosis the missing link? Scand J Immunol 82(3):218–224

    CAS  PubMed  Google Scholar 

  17. Tsokos GC, Lo MS, Costa Reis P, Sullivan KE (2016) New insights into the immunopathogenesis of systemic lupus erythematosus. Nat Rev Rheumatol 12(12):716–730

    CAS  PubMed  Google Scholar 

  18. Kobayashi T, Shimabukuro-Demoto S, Yoshida-Sugitani R, Furuyama-Tanaka K, Karyu H, Sugiura Y et al (2014) The histidine transporter SLC15A4 coordinates mTOR-dependent inflammatory responses and pathogenic antibody production. Immunity 41(3):375–388

    CAS  PubMed  Google Scholar 

  19. Arbuckle MR, McClain MT, Rubertone MV, Scofield RH, Dennis GJ, James JA et al (2003) Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N Engl J Med 349(16):1526–1533

    CAS  PubMed  Google Scholar 

  20. Wollheim FA (1986) Henrik Sjogren and Sjogren’s syndrome. Scand J Rheumatol Suppl 61:11–16

    CAS  PubMed  Google Scholar 

  21. Baer AN, Walitt B (2018) Update on Sjogren syndrome and other causes of sicca in older adults. Rheum Dis Clin N Am 44(3):419–436

    Google Scholar 

  22. Campos J, Hillen MR, Barone F (2016) Salivary gland pathology in Sjogren’s syndrome. Rheum Dis Clin N Am 42(3):473–483

    Google Scholar 

  23. Fayyaz A, Kurien BT, Scofield RH (2016) Autoantibodies in Sjogren’s syndrome. Rheum Dis Clin N Am 42(3):419–434

    Google Scholar 

  24. Mariette X (1995) Sjogren’s syndrome and virus. Ann Med Int (Paris) 146(4):243–246

    CAS  Google Scholar 

  25. Igoe A, Scofield RH (2013) Autoimmunity and infection in Sjogren’s syndrome. Curr Opin Rheumatol 25(4):480–487

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Scofield RH (2009) Genetics of systemic lupus erythematosus and Sjogren’s syndrome. Curr Opin Rheumatol 21(5):448–453

    CAS  PubMed  Google Scholar 

  27. Emamian ES, Leon JM, Lessard CJ, Grandits M, Baechler EC, Gaffney PM et al (2009) Peripheral blood gene expression profiling in Sjogren’s syndrome. Genes Immun 10(4):285–296

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Banchereau J, Pascual V (2006) Type I interferon in systemic lupus erythematosus and other autoimmune diseases. Immunity 25(3):383–392

    CAS  PubMed  Google Scholar 

  29. Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Ortmann WA, Espe KJ et al (2003) Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A 100(5):2610–2615

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Bennett L, Palucka AK, Arce E, Cantrell V, Borvak J, Banchereau J et al (2003) Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J Exp Med 197(6):711–723

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Brunner HI, Gladman DD, Ibanez D, Urowitz MD, Silverman ED (2008) Difference in disease features between childhood-onset and adult-onset systemic lupus erythematosus. Arthritis Rheum 58(2):556–562

    PubMed  Google Scholar 

  32. Tarvin SE, O’Neil KM (2018) Systemic lupus erythematosus, Sjogren syndrome, and mixed connective tissue disease in children and adolescents. Pediatr Clin N Am 65(4):711–737

    Google Scholar 

  33. Qin B, Wang J, Yang Z, Yang M, Ma N, Huang F et al (2015) Epidemiology of primary Sjogren’s syndrome: a systematic review and meta-analysis. Ann Rheum Dis 74(11):1983–1989

    CAS  Google Scholar 

  34. Sakiani S, Olsen NJ, Kovacs WJ (2013) Gonadal steroids and humoral immunity. Nat Rev Endocrinol 9(1):56–62

    CAS  PubMed  Google Scholar 

  35. Rubinow KB (2018) An intracrine view of sex steroids, immunity, and metabolic regulation. Mol Metab 15:92–103

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Seillet C, Laffont S, Tremollieres F, Rouquie N, Ribot C, Arnal JF et al (2012) The TLR-mediated response of plasmacytoid dendritic cells is positively regulated by estradiol in vivo through cell-intrinsic estrogen receptor alpha signaling. Blood 119(2):454–464

    CAS  PubMed  Google Scholar 

  37. Rider V, Abdou NI, Kimler BF, Lu N, Brown S, Fridley BL (2018) Gender bias in human systemic lupus erythematosus: a problem of steroid receptor action? Front Immunol 9:611

    PubMed  PubMed Central  Google Scholar 

  38. Fan H, Zhao G, Ren D, Liu F, Dong G, Hou Y (2017) Gender differences of B cell signature related to estrogen-induced IFI44L/BAFF in systemic lupus erythematosus. Immunol Lett 181:71–78

    CAS  PubMed  Google Scholar 

  39. Tabor DE, Gould KA (2017) Estrogen receptor alpha promotes lupus in (NZBxNZW)F1 mice in a B cell intrinsic manner. Clin Immunol 174:41–52

    CAS  PubMed  Google Scholar 

  40. Cunningham MA, Richard ML, Wirth JR, Scott JL, Eudaly J, Ruiz P et al (2019) Novel mechanism for estrogen receptor alpha modulation of murine lupus. J Autoimmun 97:59–69

    CAS  PubMed  Google Scholar 

  41. Scott JL, Wirth JR, Eudaly J, Ruiz P, Cunningham MA (2017) Complete knockout of estrogen receptor alpha is not directly protective in murine lupus. Clin Immunol 183:132–141

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kanda N, Tsuchida T, Tamaki K (1999) Estrogen enhancement of anti-double-stranded DNA antibody and immunoglobulin G production in peripheral blood mononuclear cells from patients with systemic lupus erythematosus. Arthritis Rheum 42(2):328–337

    CAS  PubMed  Google Scholar 

  43. Sakabe K, Yoshida T, Furuya H, Kayama F, Chan EK (1998) Estrogenic xenobiotics increase expression of SS-A/Ro autoantigens in cultured human epidermal cells. Acta Derm Venereol 78(6):420–423

    CAS  PubMed  Google Scholar 

  44. Mok CC, Lau CS (2000) Profile of sex hormones in male patients with systemic lupus erythematosus. Lupus 9(4):252–257

    CAS  PubMed  Google Scholar 

  45. Arnaud L, Nordin A, Lundholm H, Svenungsson E, Hellbacher E, Wikner J et al (2017) Effect of corticosteroids and cyclophosphamide on sex hormone profiles in male patients with systemic lupus erythematosus or systemic sclerosis. Arthritis Rheumatol 69(6):1272–1279

    CAS  PubMed  Google Scholar 

  46. Chang DM, Chang CC, Kuo SY, Chu SJ, Chang ML (1999) Hormonal profiles and immunological studies of male lupus in Taiwan. Clin Rheumatol 18(2):158–162

    CAS  PubMed  Google Scholar 

  47. Mackworth-Young CG, Parke AL, Morley KD, Fotherby K, Hughes GR (1983) Sex hormones in male patients with systemic lupus erythematosus: a comparison with other disease groups. Eur J Rheumatol Inflamm 6(3):228–232

    CAS  PubMed  Google Scholar 

  48. Suzuki T, Schaumberg DA, Sullivan BD, Liu M, Richards SM, Sullivan RM et al (2002) Do estrogen and progesterone play a role in the dry eye of Sjogren’s syndrome? Ann N Y Acad Sci 966:223–225

    CAS  PubMed  Google Scholar 

  49. Mavragani CP, Fragoulis GE, Moutsopoulos HM (2012) Endocrine alterations in primary Sjogren’s syndrome: an overview. J Autoimmun 39(4):354–358

    CAS  PubMed  Google Scholar 

  50. Brennan MT, Sankar V, Leakan RA, Grisius MM, Collins MT, Fox PC et al (2003) Sex steroid hormones in primary Sjogren’s syndrome. J Rheumatol 30(6):1267–1271

    CAS  PubMed  Google Scholar 

  51. Taiym S, Haghighat N, Al-Hashimi I (2004) A comparison of the hormone levels in patients with Sjogren’s syndrome and healthy controls. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 97(5):579–583

    CAS  PubMed  Google Scholar 

  52. Mostafa S, Seamon V, Azzarolo AM (2012) Influence of sex hormones and genetic predisposition in Sjogren’s syndrome: a new clue to the immunopathogenesis of dry eye disease. Exp Eye Res 96(1):88–97

    CAS  PubMed  Google Scholar 

  53. Konttinen YT, Stegajev V, Al-Samadi A, Porola P, Hietanen J, Ainola M (2015) Sjogren’s syndrome and extragonadal sex steroid formation: a clue to a better disease control? J Steroid Biochem Mol Biol 145:237–244

    CAS  PubMed  Google Scholar 

  54. Konttinen YT, Fuellen G, Bing Y, Porola P, Stegaev V, Trokovic N et al (2012) Sex steroids in Sjogren’s syndrome. J Autoimmun 39(1–2):49–56

    CAS  PubMed  Google Scholar 

  55. Song GG, Lee YH (2017) Circulating prolactin level in systemic lupus erythematosus and its correlation with disease activity: a meta-analysis. Lupus 26(12):1260–1268

    CAS  PubMed  Google Scholar 

  56. Wan Asyraf WA, Mohd Shahrir MS, Asrul W, Norasyikin AW, Hanita O, Kong WY et al (2018) The association between serum prolactin levels and interleukin-6 and systemic lupus erythematosus activity. Reumatismo 70(4):241–250

    CAS  PubMed  Google Scholar 

  57. Jara LJ, Medina G, Saavedra MA, Vera-Lastra O, Torres-Aguilar H, Navarro C et al (2017) Prolactin has a pathogenic role in systemic lupus erythematosus. Immunol Res 65(2):512–523

    CAS  PubMed  Google Scholar 

  58. Walker SE, Allen SH, McMurray RW (1993) Prolactin and autoimmune disease. Trends Endocrinol Metab 4(5):147–151

    CAS  PubMed  Google Scholar 

  59. McMurray R, Keisler D, Izui S, Walker SE (1994) Hyperprolactinemia in male NZB/NZW (B/W) F1 mice: accelerated autoimmune disease with normal circulating testosterone. Clin Immunol Immunopathol 71(3):338–343

    CAS  PubMed  Google Scholar 

  60. Walker SE, Keisler D, Komatireddy GR, McMurray RW (1998) The effects of prolactin in animal models of SLE. Scand J Rheumatol Suppl 107:31–32

    CAS  PubMed  Google Scholar 

  61. Haga HJ, Rygh T (1999) The prevalence of hyperprolactinemia in patients with primary Sjogren’s syndrome. J Rheumatol 26(6):1291–1295

    CAS  PubMed  Google Scholar 

  62. El Miedany YM, Ahmed I, Moustafa H, El Baddini M (2004) Hyperprolactinemia in Sjogren’s syndrome: a patient subset or a disease manifestation? Joint Bone Spine 71(3):203–208

    PubMed  Google Scholar 

  63. McMurray RW, Weidensaul D, Allen SH, Walker SE (1995) Efficacy of bromocriptine in an open label therapeutic trial for systemic lupus erythematosus. J Rheumatol 22(11):2084–2091

    CAS  PubMed  Google Scholar 

  64. Qian Q, Liuqin L, Hao L, Shiwen Y, Zhongping Z, Dongying C et al (2015) The effects of bromocriptine on preventing postpartum flare in systemic lupus erythematosus patients from South China. J Immunol Res 2015:316965

    PubMed  PubMed Central  Google Scholar 

  65. Walker SE (2001) Bromocriptine treatment of systemic lupus erythematosus. Lupus 10(10):762–768

    CAS  PubMed  Google Scholar 

  66. Jara LJ, Cruz-Cruz P, Saavedra MA, Medina G, Garcia-Flores A, Angeles U et al (2007) Bromocriptine during pregnancy in systemic lupus erythematosus: a pilot clinical trial. Ann N Y Acad Sci 1110:297–304

    CAS  PubMed  Google Scholar 

  67. Peeva E, Grimaldi C, Spatz L, Diamond B (2000) Bromocriptine restores tolerance in estrogen-treated mice. J Clin Invest 106(11):1373–1379

    CAS  PubMed  PubMed Central  Google Scholar 

  68. McMurray RW (2001) Bromocriptine in rheumatic and autoimmune diseases. Semin Arthritis Rheum 31(1):21–32

    CAS  PubMed  Google Scholar 

  69. Liang Y, Tsoi LC, Xing X, Beamer MA, Swindell WR, Sarkar MK et al (2017) A gene network regulated by the transcription factor VGLL3 as a promoter of sex-biased autoimmune diseases. Nat Immunol 18(2):152–160

    CAS  PubMed  Google Scholar 

  70. Billi AC, Gharaee-Kermani M, Fullmer J, Tsoi LC, Hill BD, Gruszka D et al (2019) The female-biased factor VGLL3 drives cutaneous and systemic autoimmunity. JCI Insight 4(8):127291

    PubMed  Google Scholar 

  71. Goad WB, Robinson A, Puck TT (1976) Incidence of aneuploidy in a human population. Am J Hum Genet 28(1):62–68

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Nielsen J, Wohlert M (1991) Chromosome abnormalities found among 34,910 newborn children: results from a 13-year incidence study in Arhus, Denmark. Hum Genet 87(1):81–83

    CAS  PubMed  Google Scholar 

  73. Abramsky L, Chapple J (1997) 47,XXY (Klinefelter syndrome) and 47,XYY: estimated rates of and indication for postnatal diagnosis with implications for prenatal counselling. Prenat Diagn 17(4):363–368

    CAS  PubMed  Google Scholar 

  74. Klinefelter HF, Reifenstein EC, Albright F (1942) Syndrome characterized by gynecomastisa, aspermatogenesis without a-leydigism, and increased excietion of follicle-stimulating hormone. J Clin Endocrinol 2(11):615–627

    CAS  Google Scholar 

  75. Kocar IH, Yesilova Z, Ozata M, Turan M, Sengul A, Ozdemir I (2000) The effect of testosterone replacement treatment on immunological features of patients with Klinefelter’s syndrome. Clin Exp Immunol 121(3):448–452

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Otter M, Schrander-Stumpel C, Curfs LMG (2010) Triple X syndrome: a review of the literature. Eur J Hum Genet 18(3):265–271

    PubMed  Google Scholar 

  77. Tartaglia NR, Howell S, Sutherland A, Wilson R, Wilson L (2010) A review of trisomy X (47,XXX). Orphanet J Rare Dis 5:8

    PubMed  PubMed Central  Google Scholar 

  78. Turner HH (1938) A syndrome of infantilism, congenital webbed neck, and cubitus valgus. Endocrinology 23(5):566–574

    Google Scholar 

  79. Lue Y, Jentsch JD, Wang C, Rao PN, Hikim AP, Salameh W et al (2005) XXY mice exhibit gonadal and behavioral phenotypes similar to Klinefelter syndrome. Endocrinology 146(9):4148–4154

    CAS  PubMed  Google Scholar 

  80. Michalski JP, Snyder SM, McLeod RL, Talal N (1978) Monozygotic twins with Klinefelter’s syndrome discordant for systemic lupus erythematosus and symptomatic myasthenia gravis. Arthritis Rheum 21(3):306–309

    CAS  PubMed  Google Scholar 

  81. Lahita RG, Bradlow HL (1987) Klinefelter’s syndrome: hormone metabolism in hypogonadal males with systemic lupus erythematosus. J Rheumatol Suppl 14(Suppl 13):154–157

    PubMed  Google Scholar 

  82. Jimenez-Balderas FJ, Tapia-Serrano R, Fonseca ME, Arellano J, Beltran A, Yanez P et al (2001) High frequency of association of rheumatic/autoimmune diseases and untreated male hypogonadism with severe testicular dysfunction. Arthritis Res 3(6):362–367

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Ortiz-Neu C, LeRoy EC (1969) The coincidence of Klinefelter’s syndrome and systemic lupus erythematosus. Arthritis Rheum 12(3):241–246

    CAS  PubMed  Google Scholar 

  84. Seminog OO, Seminog AB, Yeates D, Goldacre MJ (2015) Associations between Klinefelter’s syndrome and autoimmune diseases: English national record linkage studies. Autoimmunity 48(2):125–128

    CAS  PubMed  Google Scholar 

  85. Fujimoto M, Ikeda K, Nakamura T, Iwamoto T, Furuta S, Nakajima H (2015) Development of mixed connective tissue disease and Sjogren’s syndrome in a patient with trisomy X. Lupus 24(11):1217–1220

    CAS  PubMed  Google Scholar 

  86. Ishihara K, Yoshimura M, Nakao H, Kanakura Y, Kanayama Y, Matsuzawa Y (1994) T cell abnormalities in mixed connective tissue disease complicated with Klinefelter’s syndrome. Intern Med 33(11):714–717

    CAS  PubMed  Google Scholar 

  87. Tsung SH, Heckman MG (1974) Klinefelter syndrome, immunological disorders, and malignant neoplasm: report of a case. Arch Pathol Lab Med 98(5):351–354

    CAS  Google Scholar 

  88. Liu K, Kurien BT, Zimmerman SL, Kaufman KM, Taft DH, Kottyan LC et al (2016) X chromosome dose and sex bias in autoimmune diseases: increased prevalence of 47,XXX in systemic lupus erythematosus and Sjogren’s syndrome. Arthritis Rheumatol (Hoboken, NJ) 68(5):1290–1300

    CAS  Google Scholar 

  89. Slae M, Heshin-Bekenstein M, Simckes A, Heimer G, Engelhard D, Eisenstein EM (2014) Female polysomy-X and systemic lupus erythematosus. Semin Arthritis Rheum 43(4):508–512

    PubMed  Google Scholar 

  90. Chagnon P, Schneider R, Hebert J, Fortin PR, Provost S, Belisle C et al (2006) Identification and characterization of an Xp22.33;Yp11.2 translocation causing a triplication of several genes of the pseudoautosomal region 1 in an XX male patient with severe systemic lupus erythematosus. Arthritis Rheum 54(4):1270–1278

    CAS  PubMed  Google Scholar 

  91. Rasmussen A, Sevier S, Kelly JA, Glenn SB, Aberle T, Cooney CM et al (2011) The lupus family registry and repository. Rheumatology (Oxford) 50(1):47–59

    Google Scholar 

  92. Scofield RH, Bruner GR, Namjou B, Kimberly RP, Ramsey-Goldman R, Petri M et al (2008) Klinefelter’s syndrome (47,XXY) in male systemic lupus erythematosus patients: support for the notion of a gene-dose effect from the X chromosome. Arthritis Rheum 58(8):2511–2517

    PubMed  PubMed Central  Google Scholar 

  93. Dillon SP, Kurien BT, Li S, Bruner GR, Kaufman KM, Harley JB et al (2012) Sex chromosome aneuploidies among men with systemic lupus erythematosus. J Autoimmun 38(2–3):J129–J134

    CAS  PubMed  Google Scholar 

  94. Dillon S, Aggarwal R, Harding JW, Li LJ, Weissman MH, Li S et al (2011) Klinefelter’s syndrome (47,XXY) among men with systemic lupus erythematosus. Acta Paediatr 100(6):819–823

    PubMed  PubMed Central  Google Scholar 

  95. Lessard CJ, Li H, Adrianto I, Ice JA, Rasmussen A, Grundahl KM et al (2013) Variants at multiple loci implicated in both innate and adaptive immune responses are associated with Sjogren’s syndrome. Nat Genet 45(11):1284–1292

    CAS  PubMed  Google Scholar 

  96. Morris DL, Sheng Y, Zhang Y, Wang YF, Zhu Z, Tombleson P et al (2016) Genome-wide association meta-analysis in Chinese and European individuals identifies ten new loci associated with systemic lupus erythematosus. Nat Genet 48(8):940–946

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Cooney CM, Bruner GR, Aberle T, Namjou-Khales B, Myers LK, Feo L et al (2009) 46,X,del(X)(q13) Turner’s syndrome women with systemic lupus erythematosus in a pedigree multiplex for SLE. Genes Immun 10(5):478–481

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Sharma R, Harris VM, Cavett J, Kurien BT, Liu K, Koelsch KA et al (2017) Rare X chromosome abnormalities in systemic lupus erythematosus and Sjogren’s syndrome. Arthritis Rheumatol (Hoboken, NJ) 69(11):2187–2192

    CAS  Google Scholar 

  99. Sasidhar MV, Itoh N, Gold SM, Lawson GW, Voskuhl RR (2012) The XX sex chromosome complement in mice is associated with increased spontaneous lupus compared with XY. Ann Rheum Dis 71(8):1418–1422

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Smith-Bouvier DL, Divekar AA, Sasidhar M, Du S, Tiwari-Woodruff SK, King JK et al (2008) A role for sex chromosome complement in the female bias in autoimmune disease. J Exp Med 205(5):1099–1108

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Arnold AP (2009) Mouse models for evaluating sex chromosome effects that cause sex differences in non-gonadal tissues. J Neuroendocrinol 21(4):377–386

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Burgoyne PS, Arnold AP (2016) A primer on the use of mouse models for identifying direct sex chromosome effects that cause sex differences in non-gonadal tissues. Biol Sex Differ 7:68

    PubMed  PubMed Central  Google Scholar 

  103. Itoh Y, Mackie R, Kampf K, Domadia S, Brown JD, O’Neill R et al (2015) Four core genotypes mouse model: localization of the Sry transgene and bioassay for testicular hormone levels. BMC Res Notes 8:69

    PubMed  PubMed Central  Google Scholar 

  104. Lee J, Tattoli I, Wojtal KA, Vavricka SR, Philpott DJ, Girardin SE (2009) pH-dependent internalization of muramyl peptides from early endosomes enables Nod1 and Nod2 signaling. J Biol Chem 284(35):23818–23829

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Baccala R, Gonzalez-Quintial R, Blasius AL, Rimann I, Ozato K, Kono DH et al (2013) Essential requirement for IRF8 and SLC15A4 implicates plasmacytoid dendritic cells in the pathogenesis of lupus. Proc Natl Acad Sci U S A 110(8):2940–2945

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Henikoff S, Henikoff JG (1991) Automated assembly of protein blocks for database searching. Nucleic Acids Res 19(23):6565–6572

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Harris VM, Harley IWT, Kurien BT, Koelsch KA, Scofield RH (2019) The lupus risk gene CXorf21regulates lysosomal pH in a sex dependent manner. Front Immunol 10:578, https://doi.org/10.3389/fimmu.2019.00578

  108. Harris VM, Harley ITW, Kurien BT, Koelsch KA, Scofield RH (2019) Lysosomal pH is regulated in a sex dependent manner in immune cells expressing CXorf21. Front Immunol 10:578

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Shvetsova E, Sofronova A, Monajemi R, Gagalova K, HHM D, White SJ et al (2019) Skewed X-inactivation is common in the general female population. Eur J Hum Genet 27(3):455–465

    CAS  PubMed  Google Scholar 

  110. Ozbalkan Z, Bagislar S, Kiraz S, Akyerli CB, Ozer HT, Yavuz S et al (2005) Skewed X chromosome inactivation in blood cells of women with scleroderma. Arthritis Rheum 52(5):1564–1570

    CAS  PubMed  Google Scholar 

  111. Broen JC, Wolvers-Tettero IL, Geurts-van Bon L, Vonk MC, Coenen MJ, Lafyatis R et al (2010) Skewed X chromosomal inactivation impacts T regulatory cell function in systemic sclerosis. Ann Rheum Dis 69(12):2213–2216

    CAS  PubMed  Google Scholar 

  112. Santiwatana S, Mahachoklertwattana P (2018) Skewed X chromosome inactivation in girls and female adolescents with autoimmune thyroid disease. Clin Endocrinol (Oxf) 89(6):863–869

    CAS  Google Scholar 

  113. Simmonds MJ, Kavvoura FK, Brand OJ, Newby PR, Jackson LE, Hargreaves CE et al (2014) Skewed X chromosome inactivation and female preponderance in autoimmune thyroid disease: an association study and meta-analysis. J Clin Endocrinol Metab 99(1):E127–E131

    PubMed  Google Scholar 

  114. Brix TH, Knudsen GP, Kristiansen M, Kyvik KO, Orstavik KH, Hegedus L (2005) High frequency of skewed X-chromosome inactivation in females with autoimmune thyroid disease: a possible explanation for the female predisposition to thyroid autoimmunity. J Clin Endocrinol Metab 90(11):5949–5953

    CAS  PubMed  Google Scholar 

  115. Ozcelik T, Uz E, Akyerli CB, Bagislar S, Mustafa CA, Gursoy A et al (2006) Evidence from autoimmune thyroiditis of skewed X-chromosome inactivation in female predisposition to autoimmunity. Eur J Hum Genet 14(6):791–797

    CAS  PubMed  Google Scholar 

  116. Uz E, Mustafa C, Topaloglu R, Bilginer Y, Dursun A, Kasapcopur O et al (2009) Increased frequency of extremely skewed X chromosome inactivation in juvenile idiopathic arthritis. Arthritis Rheum 60(11):3410–3412

    PubMed  Google Scholar 

  117. Huang Q, Parfitt A, Grennan DM, Manolios N (1997) X-chromosome inactivation in monozygotic twins with systemic lupus erythematosus. Autoimmunity 26(2):85–93

    CAS  PubMed  Google Scholar 

  118. Chitnis S, Monteiro J, Glass D, Apatoff B, Salmon J, Concannon P et al (2000) The role of X-chromosome inactivation in female predisposition to autoimmunity. Arthritis Res 2(5):399–406

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Hamza RT, Raof NA, Abdallah KO (2013) Prevalence of multiple forms of autoimmunity in Egyptian patients with Turner syndrome: relation to karyotype. J Pediatr Endocrinol Metab 26(5–6):545–550

    CAS  PubMed  Google Scholar 

  120. Elsheikh M, Wass JA, Conway GS (2001) Autoimmune thyroid syndrome in women with Turner’s syndrome—the association with karyotype. Clin Endocrinol (Oxf) 55(2):223–226

    CAS  Google Scholar 

  121. Jorgensen KT, Rostgaard K, Bache I, Biggar RJ, Nielsen NM, Tommerup N et al (2010) Autoimmune diseases in women with Turner’s syndrome. Arthritis Rheum 62(3):658–666

    PubMed  Google Scholar 

  122. Invernizzi P, Miozzo M, Selmi C, Persani L, Battezzati PM, Zuin M et al (2005) X chromosome monosomy: a common mechanism for autoimmune diseases. J Immunol 175(1):575–578

    CAS  PubMed  Google Scholar 

  123. Invernizzi P (2007) The X chromosome in female-predominant autoimmune diseases. Ann N Y Acad Sci 1110:57–64

    CAS  PubMed  Google Scholar 

  124. Invernizzi P, Miozzo M, Oertelt-Prigione S, Meroni PL, Persani L, Selmi C et al (2007) X monosomy in female systemic lupus erythematosus. Ann N Y Acad Sci 1110:84–91

    CAS  PubMed  Google Scholar 

  125. Forsdyke DR (1994) Relationship of X chromosome dosage compensation to intracellular self/not-self discrimination: a resolution of Muller’s paradox? J Theor Biol 167(1):7–12

    CAS  PubMed  Google Scholar 

  126. Forsdyke DR (2009) X chromosome reactivation perturbs intracellular self/not-self discrimination. Immunol Cell Biol 87(7):525–528

    CAS  PubMed  Google Scholar 

  127. Forsdyke DR (2012) Ohno’s hypothesis and Muller’s paradox: sex chromosome dosage compensation may serve collective gene functions. BioEssays 34(11):930–933

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Hal Scofield .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Scofield, R.H., Harris, V.M. (2020). Sex Bias in Systemic Lupus Erythematosus and Sjögren’s Syndrome. In: Sharma, S. (eds) Women's Health in Autoimmune Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-15-0114-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0114-2_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0113-5

  • Online ISBN: 978-981-15-0114-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics