Skip to main content

Biomaterials in Tooth Tissue Engineering

  • Chapter
  • First Online:
Biomaterials in Orthopaedics and Bone Regeneration

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

  • 600 Accesses

Abstract

Tooth tissue engineering through advancements in cell biology and bioengineering has proceeded toward regeneration of entire tooth or individual and surrounding components of tooth. Tooth regenerative therapy is a novel therapeutic concept directing toward restoration of physiological function of tooth such as mastication, periodontal ligament function, and response to noxious stimuli. Tooth regeneration is achieved through two distinctive approaches such as cell transplantation and cell homing. Cell-based strategies are a promising potential for regenerating the whole tooth structure in rodents but rendering obstacles in therapeutics. Cell homing is an under-recognized alternative approach to cell delivery-based tooth regeneration. This approach provides tangible pathway toward clinical translation. Scaffold-based or scaffold-free tissue engineering is considered for tooth regeneration. Scaffold-based approach uses scaffolds planted with cells either in vitro or by cell homing. Scaffold-free approach directly induces development of embryonic tooth formation by appropriate signals to produce tooth structure which mimics natural teeth in morphology and size. The combination of biomaterials and human tooth‐associated with stem cell populations isolated from dental pulp and periodontal ligament tissues shows promising approach to regenerate human dental tissues. Scaffolds provide biophysical support for cell recruitment, adhesion, proliferation, differentiation, and metabolism. The designed scaffolds should be biocompatible, non-toxic, and promote regeneration of single or multiple dental tissues. Different types of biomaterials for constructing scaffolds are available that can regenerate tooth components which successfully improves the treatment outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sharma S, Srivastava D, Grover S, Sharma V (2014) Biomaterials in tooth tissue engineering: a review. J Clin Diagn Res 8(1):309–315

    Google Scholar 

  2. Young CS, Terada S, Vacanti JP, Honda M, Bartlett JD, Yelick PC (2002) Tissue engineering of complex tooth structures on biodegradable polymer scaffolds. J Dent Res 81(10):695–700

    Article  CAS  Google Scholar 

  3. Duailibi MT, Duailibi SE, Young CS, Bartlett JD, Vacanti JP, Yelick PC (2004) Bioengineered teeth from cultured rat tooth bud cells. J Dent Res 83(7):523–528

    Article  CAS  Google Scholar 

  4. Honda MJ, Sumita Y, Kagami H, Ueda M (2005) Histological and immune histochemical studies of tissue engineered odontogenesis. Arch Histol Cytolo 68(2):89–101

    Article  Google Scholar 

  5. Duailibi SE, Duailibi MT, Zhang W, Asrican R, Vacanti JP, Yelick PC (2008) Bioengineered dental tissues grown in the rat jaw. J Dent Res 87(8):745–750

    Article  CAS  Google Scholar 

  6. Ahsan T (2007) Tissue engineering and regenerative medicine: advancing toward clinical therapies. Trans Approaches Tissue Eng Regener Med 3–16

    Google Scholar 

  7. Kim K, Lee CH, Kim BK, Mao JJ (2010) Anatomically shaped tooth and periodontal regeneration by cell homing. J Dent Res 89(8):842–847

    Article  CAS  Google Scholar 

  8. Yuan Z, Nie H, Wang S, Lee CH, Li A, Fu SY, Zhou H, Chen L, Mao JJ (2011) Biomaterial selection for tooth regeneration. Tissue Eng Part B 17(5):373–388

    Article  CAS  Google Scholar 

  9. Kim SG, Zheng Y, Zhou J, Chen M, Embree MC, Song K, Jiang N, Mao JJ (2013) Dentin and dental pulp regeneration by the patient’s endogenous cells. Endod Top 28(1):106–117

    Article  Google Scholar 

  10. Huang GJ, Garcia-Godoy F (2014) Missing concepts in de novo pulp regeneration. J Dent Res 93(8):717–724

    Article  Google Scholar 

  11. Xiao L, Nasu M (2014) From regenerative dentistry to regenerative medicine: progress, challenges, and potential applications of oral stem cells. Stem Cells Cloning Adv Appl 7:89–99

    Article  CAS  Google Scholar 

  12. Ohazama A, Modino SAC, Miletich I, Sharpe PT (2004) Stem-cell-based tissue engineering of murine teeth. J Dent Res 83(7):518–522

    Article  CAS  Google Scholar 

  13. Arakaki M, Ishikawa M, Nakamura T, Iwamoto T, Yamada A, Fukumoto E, Saito M, Otsu K, Harada H, Yamada Y, Fukumoto S (2012) Role of epithelial-stem cell interactions during dental cell differentiation. J Biol Chem 287(13):10590–10601

    Article  CAS  Google Scholar 

  14. Lee JH, Lee DS, Choung HW, Shon WJ, Seo BM, Lee EH, Cho JY, Park JC (2011) Odontogenic differentiation of human dental pulp stem cells induced by preameloblast-derived factors. Biomaterials 32(36):9696–9706

    Article  CAS  Google Scholar 

  15. Nakao K, Morita R, Saji Y, Ishida K, Tomita Y, Ogawa M, Saitoh M, Tomooka Y, Tsuji T (2007) The development of a bioengineered organ germ method. Nat Methods 4(3):227

    Article  CAS  Google Scholar 

  16. Ikeda E, Tsuji T (2008) Growing bioengineered teeth from single cells: potential for dental regenerative medicine. Expert Opin Biol Ther 8(6):735–744

    Article  CAS  Google Scholar 

  17. Ikeda E, Morita R, Nakao K, Ishida K, Nakamura T, Takano-Yamamoto T, Ogawa M, Mizuno M, Kasugai S, Tsuji T (2009) Fully functional bioengineered tooth replacement as an organ replacement therapy. Proc Natl Acad Sci 106(32):13475–13480

    Article  CAS  Google Scholar 

  18. Oshima M, Mizuno M, Imamura A, Ogawa M, Yasukawa M, Yamazaki H, Morita R, Ikeda E, Nakao K, Takano-Yamamoto T, Kasugai S (2011) Functional tooth regeneration using a bioengineered tooth unit as a mature organ replacement regenerative therapy. PloS One 6(7):p.e21531

    Article  Google Scholar 

  19. Hartgerink JD, Beniash E, Stupp SI (2001) Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294(5547):1684–1688

    Article  CAS  Google Scholar 

  20. Xu R, Zhou Y, Zhang B, Shen J, Gao B, Xu X, Ye L, Zheng L, Zhou X (2015) Enamel regeneration in making a bioengineered tooth. Curr Stem Cell Res Ther 10(5):434–442

    Article  CAS  Google Scholar 

  21. Yu JH, Shi JN, Deng ZH, Zhuang H, Nie X, Wang RN, Jin Y (2006) Cell pellets from dental papillae can reexhibit dental morphogenesis and dentinogenesis. Biochem Biophys Res Commun 346(1):116–124

    Article  CAS  Google Scholar 

  22. Iohara K, Nakashima M, Ito M, Ishikawa M, Nakasima A, Akamine A (2004) Dentin regeneration by dental pulp stem cell therapy with recombinant human bone morphogenetic protein. J Dent Res 83(8):590–595

    Article  CAS  Google Scholar 

  23. Fukumoto S, Miner JH, Ida H, Fukumoto E, Yuasa K, Miyazaki H, Hoffman MP, Yamada Y (2006) Laminin Îħ5 is required for dental epithelium growth and polarity and the development of tooth bud and shape. J Biol Chem 281(8):5008–5016

    Article  CAS  Google Scholar 

  24. Liu L, Liu YF, Zhang J, Duan YZ, Jin Y (2016) Ameloblasts serum free conditioned medium: bone morphogenic protein 4 induced odontogenic differentiation of mouse induced pluripotent stem cells. J Tissue Eng Regener Med 10(6):466–474

    Article  CAS  Google Scholar 

  25. Zheng LW, Linthicum L, DenBesten PK, Zhang Y (2013) The similarity between human embryonic stem cell-derived epithelial cells and ameloblast-lineage cells. Int J Oral Sci 5(1):1–6

    Article  CAS  Google Scholar 

  26. He P, Zhang Y, Kim SO, Radlanski RJ, Butcher K, Schneider RA, Den-Besten PK (2010) Ameloblast differentiation in the human developing tooth: effects of extracellular matrices. Matrix Biol 29(5):411–419

    Article  CAS  Google Scholar 

  27. Kollar EJ, Fisher C (1980) Tooth induction in chick epithelium: expression of quiescent genes for enamel synthesis. Science 207(4434):993–995

    Article  CAS  Google Scholar 

  28. Bing Hu, Nadiri Amal, Bopp Sabine Kuchler (2006) Tissue engineering of tooth crown, root, and periodontium. Tissue Eng Part A 12(8):2069–2075

    Article  Google Scholar 

  29. Storrie H, Guler MO, Abu-Amara SN, Volberg T, Rao M, Geiger B, Stupp SI (2007) Supramolecular crafting of cell adhesion. Biomaterials 28(31):4608–4618

    Article  CAS  Google Scholar 

  30. Stupp SI, Hartgerink JD, Beniash E, Northwestern University (2009) Self-assembly and mineralization of peptide-amphiphile nanofibers. US Patent 7,491,690

    Google Scholar 

  31. Huang Z, Sargeant TD, Hulvat JF, Mata A, Bringas-Jr P, Koh CY, Stupp SI, Snead ML (2008) Bioactive nanofibers instruct cells to proliferate and differentiate during enamel regeneration. J Bone Miner Res 23(12):1995–2006

    Article  CAS  Google Scholar 

  32. Borovjagin AV, Dong J, Passineau MJ, Ren C, Lamani E, Mamaeva OA, Wu H, Keyser E, Murakami M, Chen S, MacDougall M (2011) Adenovirus gene transfer to amelogenesis imperfecta ameloblast-like cells. PloS One 6(10):p.e24281

    Article  Google Scholar 

  33. Sharp T, Wang J, Li X, Cao H, Gao S, Moreno M, Amendt BA (2014) A pituitary homeobox 2 (Pitx2): microRNA-200a-3p: beta-catenin pathway converts mesenchyme cells to amelogenin-expressing dental epithelial cells. J Biol Chem 289(39):27327–27341

    Article  CAS  Google Scholar 

  34. Akhter M, Kobayashi I, Kiyoshima T, Matsuo K, Yamaza H, Wada H, Honda JY, Ming X, Sakai H (2005) Possible functional involvement of thymosin beta 4 in developing tooth germ of mouse lower first molar. Histochem Cell Biol 124(3–4):207–213

    Article  CAS  Google Scholar 

  35. Shiotsuka M, Wada H, Kiyoshima T, Nagata K, Fujiwara H, Kihara M, Hasegawa K, Someya H, Takahashi I, Sakai H (2014) The expression and function of thymosin beta 10 in tooth germ development. Int J Dev Biol 57(11–12):873–883

    Google Scholar 

  36. Wang B, Li L, Du S, Liu C, Lin X, Chen Y, Zhang Y (2010) Induction of human keratinocytes into enamel-secreting ameloblasts. Dev Biol 344(2):795–799

    Article  CAS  Google Scholar 

  37. Inoue T (1986) Induction of chondrogenesis in muscle, skin, bone marrow, and periodontal ligament by demineralaized dentin and bone matrix in vivo and in vitro. J Dent Res 65:15–21

    Article  Google Scholar 

  38. Bessho K, Tanaka N, Matsumoto J, Tagawa T, Murata M (1991) Human dentin-matrix-derived bone morphogenetic protein. J Dent Res 70(3):171–175

    Article  CAS  Google Scholar 

  39. Rutherford RB, Wahle J, Tucker M, Rueger D, Charette M (1993) Induction of reparative dentine formation in monkeys by recombinant human osteogenic protein-1. Arch Oral Biol 38(7):571–576

    Article  CAS  Google Scholar 

  40. Shinmura Y, Tsuchiya S, Hata KI, Honda MJ (2008) Quiescent epithelial cell rests of Malassez can differentiate into ameloblast like cells. J Cell Physiol 217(3):728–738

    Article  CAS  Google Scholar 

  41. Murray PE, Garcia-Godoy F, Hargreaves KM (2007) Regenerative endodontics: a review of current status and a call for action. J Endod 33(4):377–390

    Article  Google Scholar 

  42. Fouad AF (2011) The microbial challenge to pulp regeneration. Adv Dent Res 23(3):285–289

    Article  CAS  Google Scholar 

  43. Sun HH, Jin T, Yu Q, Chen FM (2011) Biological approaches toward dental pulp regeneration by tissue engineering. J Tissue Eng Regener Med 5(4):e1–e16

    Article  CAS  Google Scholar 

  44. Morse DR, O’Larnic J, Yesilsoy C (1990) Apexification: review of the literature. Quintessence Int 21(7):58–598

    Google Scholar 

  45. Suzuki T, Lee CH, Chen M, Zhao W, Fu SY, Qi JJ, Chotkowski G, Eisig SB, Wong A, Mao JJ (2011) Induced migration of dental pulp stem cells for in vivo pulp regeneration. J Dent Res 90(8):1013–1018

    Article  CAS  Google Scholar 

  46. Pan S, Dangaria S, Gopinathan G, Yan X, Lu X, Kolokythas A, Niu Y, Luan X (2013) SCF promotes dental pulp progenitor migration, neovascularization, and collagen remodeling-potential applications as a homing factor in dental pulp regeneration. Stem Cell Rev Rep 9(5):655–667

    Article  CAS  Google Scholar 

  47. Takeuchi N, Hayashi Y, Murakami M, Alvarez FJ, Horibe H, Iohara K, Nakata K, Nakamura H, Nakashima M (2015) Similar in vitro effects and pulp regeneration in ectopic tooth transplantation by basic fibroblast growth factor and granulocyte colony stimulating factor. Oral Dis 21(1):113–122

    Article  CAS  Google Scholar 

  48. Yang JW, Zhang YF, Wan CY, Sun ZY, Nie S, Jian SJ, Zhang L, Song GT, Chen Z (2015) Autophagy in SDF-1Îħ-mediated DPSC migration and pulp regeneration. Biomaterials 44:11–23

    Article  CAS  Google Scholar 

  49. Zhang LX, Shen LL, Ge SH, Wang LM, Yu XJ, Xu QC, Yang PS, Yang CZ (2015) Systemic BMSC homing in the regeneration of pulp-like tissue and the enhancing effect of stromal cell-derived factor-1 on BMSC homing. Int J Clin Exp Pathol 8(9):10261

    CAS  Google Scholar 

  50. Li L, Wang Z (2016) PDGF-BB, NGF and BDNF enhance pulp-like tissue regeneration via cell homing. RSC Adv 6(111):109519–109527

    Article  CAS  Google Scholar 

  51. Wang HL, Greenwell H, Fiorellini J, Giannobile W, Offenbacher S, Salkin L, Townsend C, Sheridan P, Genco RJ (2005) Periodontal regeneration. J Periodontol 76(9):1601–1622

    Article  CAS  Google Scholar 

  52. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci 97(25):13625–13630

    Article  CAS  Google Scholar 

  53. Shi S, Bartold PM, Miura M, Seo BM, Robey PG, Gronthos S (2005) The efficacy of mesenchymal stem cells to regenerate and repair dental structures. Orthod Craniofac Res 8(3):191–199

    Article  CAS  Google Scholar 

  54. Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, DenBesten P, Robey PG, Shi S (2002) Stem cell properties of human dental pulp stem cells. J Dent Res 81(8):531–535

    Article  CAS  Google Scholar 

  55. Koyama N, Okubo Y, Nakao K, Bessho K (2009) Evaluation of pluripotency in human dental pulp cells. J Oral Maxillofac Sur 67(3):501–506

    Article  Google Scholar 

  56. Bressan E, Ferroni L, Gardin C, Pinton P, Stellini E, Botticelli D, Sivolella S, Zavan B (2012) Donor age-related biological properties of human dental pulp stem cells change in nanostructured scaffolds. PLoS One 7(11):49146

    Article  Google Scholar 

  57. d’Aquino R, Graziano A, Sampaolesi M, Laino G, Pirozzi G, De Rosa A, Papaccio G (2007) Human postnatal dental pulp cells co-differentiate into osteoblasts and endotheliocytes: a pivotal synergy leading to adult bone tissue formation. Cell Death Differ 14(6):1162

    Article  Google Scholar 

  58. Yu J, He H, Tang C, Zhang G, Li Y, Wang R, Shi J, Jin Y (2010) Differentiation potential of STRO-1+ dental pulp stem cells changes during cell passaging. BMC Cell Biol 11(1):32

    Article  Google Scholar 

  59. Kaushik SN, Kim B, Walma AMC, Choi SC, Wu H, Mao JJ, Jun HW, Cheon K (2016) Biomimetic microenvironments for regenerative endodontics. Biomater Res 20(1):14

    Article  Google Scholar 

  60. Wongwatanasanti N, Jantarat J, Sritanaudomchai H, Hargreaves KM (2018) Effect of bioceramic materials on proliferation and odontoblast differentiation of human stem cells from the apical papilla. J Endod 44(8):1270–1275

    Article  Google Scholar 

  61. Hong S, Chen W, Jiang B (2018) A comparative evaluation of concentrated growth factor and platelet-rich fibrin on the proliferation, migration, and differentiation of human stem cells of the apical papilla. J Endod 44(6):977–983

    Article  Google Scholar 

  62. Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S (2004) Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364(9429):149–155

    Article  CAS  Google Scholar 

  63. Yoo JH, Lee SM, Bae MK, Lee DJ, Ko CC, Kim YI, Kim HJ (2018) Effect of orthodontic forces on the osteogenic differentiation of human periodontal ligament stem cells. J Oral Sci 17:0310

    Google Scholar 

  64. Wang Y, Zhou Y, Jin L, Pang X, Lu Y, Wang Z, Yu Y, Yu J (2018) Mineral trioxide aggregate enhances the osteogenic capacity of periodontal ligament stem cells via NFκB and MAPK signaling pathways. J Cell Physiol 233(3):2386–2397

    Article  CAS  Google Scholar 

  65. Yan XZ, Beucken JJ, Yuan C, Jansen JA, Yang F (2018) Spheroid formation and stemness preservation of human periodontal ligament cells on chitosan films. Oral Dis 24(6):1083–1092

    Article  Google Scholar 

  66. Handa K, Saito M, Yamauchi M, Kiyono T, Sato S, Teranaka T, Narayanan AS (2002) Cementum matrix formation in vivo by cultured dental follicle cells. Bone 31(5):606–611

    Article  CAS  Google Scholar 

  67. Guo L, Li J, Qiao X, Yu M, Tang W, Wang H, Guo W, Tian W (2013) Comparison of odontogenic differentiation of human dental follicle cells and human dental papilla cells. PLoS One 8(4):62332

    Article  Google Scholar 

  68. Batouli S, Miura M, Brahim J (2003) Comparison of stem-cell- mediated osteogenesis and dentinogenesis. J Dent Res 82:976–981

    Article  CAS  Google Scholar 

  69. Cordeiro MM, Dong Z, Kaneko T, Zhang Z, Miyazawa M, Shi S, Smith AJ, Nor JE (2008) Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth. J Endod 34(8):962–969

    Article  Google Scholar 

  70. Nakamura S, Yamada Y, Katagiri W, Sugito T, Ito K, Ueda M (2009) Stem cell proliferation pathways comparison between human exfoliated deciduous teeth and dental pulp stem cells by gene expression profile from promising dental pulp. J Endod 35(11):1536–1542

    Article  Google Scholar 

  71. Albrektsson T, Johansson C (2001) Osteoinduction, osteoconduction and osseointegration. Eur Spine J 10(2):S96–S101

    Google Scholar 

  72. Bhui AS, Singh G, Sidhu SS, Bains PS (2018) Experimental investigation of optimal ED machining parameters for Ti-6Al-4V biomaterial. FU Ser Mech Eng 16(3):337–345

    Article  Google Scholar 

  73. Granito RN, Custodio MR, Renno ACM (2017) Natural marine sponges for bone tissue engineering: the state of art and future perspectives. J Biomed Mater Res Part B Appl Biomater 105(6):1717–1727

    Article  CAS  Google Scholar 

  74. Ganesh N, Hanna C, Nair SV, Nair LS (2013) Enzymatically cross-linked alginic-hyaluronic acid composite hydrogels as cell delivery vehicles. Int J Biol Macromol 55:289–294

    Article  CAS  Google Scholar 

  75. Husain S, Al-Samadani KH, Najeeb S, Zafar MS, Khurshid Z, Zohaib S, Qasim SB (2017) Chitosan biomaterials for current and potential dental applications. Materials 10(6):602

    Article  Google Scholar 

  76. Varoni EM, Vijayakumar S, Canciani E, Cochis A, De-Nardo L, Lodi G, Rimondini L, Cerruti M (2018) Chitosan-based trilayer scaffold for multitissue periodontal regeneration. J Dent Res 97(3):303–311

    Article  CAS  Google Scholar 

  77. Srinivasan S, Jayasree R, Chennazhi KP, Nair SV, Jayakumar R (2012) Biocompatible alginate/nano bioactive glass ceramic composite scaffolds for periodontal tissue regeneration. Carbohydr Polym 87(1):274–283

    Article  CAS  Google Scholar 

  78. Uhrich KE, Rutgers State University of New Jersey (2010) Polyanhydride linkers for production of drug polymers and drug polymer compositions produced thereby. US Patent 7,666,398

    Google Scholar 

  79. Conte R, Di-Salle A, Riccitiello F, Petillo O, Peluso G, Calarco A (2018) Biodegradable polymers in dental tissue engineering and regeneration. Mater Sci 5(6):1073–1101

    CAS  Google Scholar 

  80. Hasturk H, Kantarci A, Ghattas M, Dangaria SJ, Abdallah R, Morgan EF, Diekwisch TG, Ashman A, Van-Dyke T (2014) The use of light/chemically hardened polymethylmethacrylate, polyhydroxylethylmethacrylate, and calcium hydroxide graft material in combination with polyanhydride around implants and extraction sockets in minipigs: part II: histologic and micro CT evaluations. J Periodontol 85(9):1230–1239

    Article  CAS  Google Scholar 

  81. Bains PS, Sidhu SS, Payal HS (2016) Fabrication and machining of metal matrix composites: a review. Mater Manuf Process 31(5):553–573

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Pushpalatha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Âİ 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pushpalatha, C., Nagaraja, S., Sowmya, S.V., Kamala, C. (2019). Biomaterials in Tooth Tissue Engineering. In: Bains, P., Sidhu, S., Bahraminasab, M., Prakash, C. (eds) Biomaterials in Orthopaedics and Bone Regeneration . Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-13-9977-0_7

Download citation

Publish with us

Policies and ethics