Skip to main content

Passive Prosthetic Ankle and Foot with Glass Fiber Reinforced Plastic: Biomechanical Design, Simulation, and Optimization

  • Chapter
  • First Online:
Biomaterials in Orthopaedics and Bone Regeneration

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

  • 636 Accesses

Abstract

This chapter dedicates an innovative design, analysis, and computational optimization for a novel passive prosthetic ankle and foot 1.0 and 2.0. The glass fiber reinforced plastic material is used as for the proposed prosthesis. The biomechanical design is inspired by the concept of compliant mechanism and bioengineering. Several shapes and topology of the ankle–foot are developed. Then, simulations are conducted to monitor the structural behaviors and dynamic characteristics. Three basic phases, heel strike, midstance, and toe-off, of the prosthesis 1.0 and 2.0 are analyzed by finite element method. The results found that the maximum Von Mises stresses are concentrated on the shank at toe-off. To improve the performance, a hybrid integration of Taguchi method, response surface methodology, and differential evolution algorithm is developed. The Taguchi method is used to construct the number of numerical experiments, and the response surface methodology is utilized to establish the input factors and the output strain energy. Based on the well-established mathematical model, the differential evolution algorithm is applied to the best geometric parameters of the ankle–foot. The result showed that the optimal strain energy is approximately improved 155% compared to initial design. In addition, the optimal energy strain is about 93.914 mJ. The ankle–foot 1.0 and 2.0 can be monolithically manufactured by using 3D printing. The proposed prosthetic ankle–foot may be appropriate for an amputee’s weight of 100 kg.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grabowski A, D’Andrea S, Herr H (2011) Bionic leg prosthesis emulates biological ankle joint during walking. Proc Ann Meeting Am Soc Biomech, 1–2

    Google Scholar 

  2. Casillas JM, Dulieu V, Cohen M, Marcer I, Didier JP (1995) Bioenergetic comparison of a new energy-storing foot and SACH foot in traumatic below-knee vascular amputations. Arch Phys Med Rehabil 76(1):39–44

    Article  CAS  Google Scholar 

  3. Rao SS, Boyd LA, Mulroy SJ, Bontrager EL, Gronley J, Perry J (1998) Segment velocities in normal and tarsotibial amputees: prosthetic design implications. Trans Rehabil Eng 6(2):219–226

    Article  CAS  Google Scholar 

  4. Torburn L, Perry J, Ayyappa E, Shanfield SL (1990) Below-knee amputee gait with dynamic elastic response prosthetic feet: a pilot study. J Rehabil Res Dev 27(4):369

    Article  CAS  Google Scholar 

  5. Lehmann J, Price R, Boswell-Bessette S, Dralle A, Questad K, DeLateur B (1993) Comprehensive analysis of energy storing prosthetic feet: flex foot and seattle foot versus standard SACH foot. Arch Phys Med Rehabil 74(11):1225–1231

    CAS  Google Scholar 

  6. Macfarlane PA, Nielsen DH, Shurr DG, Meier K (1991) Gait comparisons for below-knee amputees using a flex-foottm versus a conventional prosthetic foot. J Pros Ortho 3(4):150–161

    Article  Google Scholar 

  7. Postema K, Hermens H, De-Vries J, Koopman H, Eisma W (1997) Energy storage and release of prosthetic feet Part 1: biomechanical analysis related to user benefits. Pros Ortho Int 21(1):17–27

    CAS  Google Scholar 

  8. Postema K, Hermens H, De-Vries J, Koopman H, Eisma W (1997) Energy storage and release of prosthetic feet Part 2: subjective ratings of 2 energy storing and 2 conventional feet, user choice of foot and deciding factor. Pros Ortho Int 21(1):28–34

    CAS  Google Scholar 

  9. Linden M, Solomonidis S, Spence W, Li N, Paul J (1999) A methodology for studying the effects of various types of prosthetic feet on the biomechanics of trans-femoral amputee gait. J Biomech 32(9):877–889

    Article  Google Scholar 

  10. Hafner BJ, Sanders JE, Czerniecki J, Fergason J (2002) Energy storage and return prostheses: does patient perception correlate with biomechanical analysis? Clin Biomech 17(5):325–344

    Article  Google Scholar 

  11. Hafner BJ, Sanders JE, Czerniecki JM, Fergason J (2002) Transtibial energy-storage-and-return prosthetic devices: a review of energy concepts and a proposed nomenclature. J Rehabil Res Dev 39(1):1

    Article  Google Scholar 

  12. Fey NP, Klute GK, Neptune RR (2011) The influence of energy storage and return foot stiffness on walking mechanics and muscle activity in below-knee amputees. Clin Biomech 26(10):1025–1032

    Article  Google Scholar 

  13. Zmitrewicz RJ, Neptune RR, Sasaki K (2007) Mechanical energetic contributions from individual muscles and elastic prosthetic feet during symmetric unilateral transtibial amputee walking: a theoretical study. J Biomech 40(8):1824–1831

    Article  Google Scholar 

  14. Bedaiwi BA, Chiad JS (2012) Vibration analysis and measurement in the below knee prosthetic limb: part I-experimental work. Proc ASME Int Mech Eng Congr Exposition, 851–858

    Google Scholar 

  15. Cherelle P, Grosu V, Matthys A, Vanderborght B, Lefeber D (2014) Design and validation of the ankle mimicking prosthetic (AMP-) foot 2.0. Trans Neural Syst Rehabil Eng 22(1):138–148

    Article  Google Scholar 

  16. Cherelle P, Grosu V, Van-Damme M, Vanderborght B, Lefeber D (2013) Use of compliant actuators in prosthetic feet and the design of the AMP-foot 2.0. Model Simul Optim Bipedal Walking, 17–30

    Google Scholar 

  17. Cherelle P, Junius K, Grosu V, Cuypers H, Vanderborght B, Lefeber D (2014) The amp-foot 2.1: actuator design, control and experiments with an amputee. Robo 32(8):1347–1361

    Article  Google Scholar 

  18. Cherelle P, Mathijssen G, Wang Q, Vanderborght B, Lefeber D (2014) Advances in propulsive bionic feet and their actuation principles. Adv Mech Eng. https://doi.org/10.1155/2014/984046

    Article  Google Scholar 

  19. Starker F, Schneider U, Hansen AH, Childress DS, Pauli J, Pauli C (2015) Artificial ankle, artificial foot and artificial leg. Google Patents

    Google Scholar 

  20. Ko CY, Kim SB, Kim JK, Chang Y, Cho H, Kim S, Ryu J, Mun M (2016) Biomechanical features of level walking by transtibial amputees wearing prosthetic feet with and without adaptive ankles. J Mech Sci Technol 30(6):2907–2914

    Article  Google Scholar 

  21. Ghaith FA, Khan FA (2012) Nonlinear finite element modeling of prosthetic lower limbs. Proc Int Conf Adv Robo Mech Eng Des. 02.ARMED.2012.2.3

    Google Scholar 

  22. Jimenez-Fabian R, Flynn L, Geeroms J, Vitiello N, Vanderborght B, Lefeber D (2015) Sliding-bar MACCEPA for a powered ankle prosthesis. J Mech Rob 7(4):041011

    Article  Google Scholar 

  23. Kerkum YL, Al Buizer, Noort JC, Becher JG, Harlaar J, Brehm MA (2015) The effects of varying ankle foot orthosis stiffness on gait in children with spastic cerebral palsy who walk with excessive knee flexion. PLoS ONE 10(11):e0142878

    Article  Google Scholar 

  24. Leardini A, O’Connor JJ, Giannini S (2014) Biomechanics of the natural, arthritic, and replaced human ankle joint. J Foot Ankle Res 7(1):8

    Article  Google Scholar 

  25. Noroozi S, Rahman AGA, Dupac M, Vinney JE (2012) Dynamic characteristics of prosthetic feet: a comparison between modal parameters of walking, running and sprinting foot. Adv Mech Design, 339–344

    Google Scholar 

  26. Omasta M, Palousek D, Navrat T, Rosicky J (2012) Finite element analysis for the evaluation of the structural behaviour of a prosthesis for trans-tibial amputees. Med Eng Phys 34(1):38–45

    Article  Google Scholar 

  27. Rigney SM, Simmons A, Kark L (2015) Concurrent multibody and Finite Element analysis of the lower-limb during amputee running. Proc Eng Med Biol Soc, 2434–2437

    Google Scholar 

  28. Veneva I, Vanderborght B, Lefeber D, Cherelle P (2013) Propulsion system with pneumatic artificial muscles for powering ankle-foot orthosis. J Theor Appl Mech 43(4):3–16

    Article  Google Scholar 

  29. Casillas JM, Dulieu V, Cohen M, Marcer I, Didier JP (1995) Bioenergetic comparison of a new energy-storing foot and SACH foot in traumatic below-knee vascular amputations. Arch Phys Med Rehabil 76:39–44

    Article  CAS  Google Scholar 

  30. Rao SS, Boyd LA, Mulroy SJ, Bontrager EL, Gronley J, Perry J (1998) Segment velocities in normal and transtibial amputees: prosthetic design implications. Trans Rehabil Eng 6:219–226

    Article  CAS  Google Scholar 

  31. Torburn L, Perry J, Ayyappa E, Shanfield SL (1990) Below-knee amputee gait with dynamic elastic response prosthetic feet: a pilot study. J Rehabil Res Dev 27:369

    Article  CAS  Google Scholar 

  32. Lehmann J, Price R, Boswell-Bessette S, Dralle A, Questad K, DeLateur B (1993) Comprehensive analysis of energy storing prosthetic feet: flex foot and seattle foot versus standard SACH foot. Arch Phys Med Rehabil 74:1225–1231

    Article  CAS  Google Scholar 

  33. Macfarlane PA, Nielsen DA, Shurr DG, Meier K (1991) Gait comparisons for below-knee amputees using a flex-foot versus a conventional prosthetic foot. J Pros Ortho 3:150–161

    Article  Google Scholar 

  34. Au S, Berniker M, Herr H (2008) Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits. Neural Netw 21:654–666

    Article  Google Scholar 

  35. Sun J, Voglewede PA (2014) Powered transtibial prosthetic device control system design, implementation, and bench testing. J Med Devices 8:011004

    Article  Google Scholar 

  36. Collins SH, Kuo AD (2010) Recycling energy to restore impaired ankle function during human walking. PLoS ONE 5:e9307

    Article  Google Scholar 

  37. Howell LL, Magleby SP, Olsen BM (2013) Handbook of compliant mechanisms. Wiley

    Google Scholar 

  38. Dao TP, Huang SC (2015) Design, fabrication, and predictive model of a 1-dof translational, flexible bearing for high precision mechanism. Trans Canad Soc Mech Eng 39(3):419–429

    Article  Google Scholar 

  39. Dao TP, Huang SC (2017) Compliant thin-walled joint based on zygoptera nonlinear geometry. J Mech Sci Technol 31(3):1293–1303

    Article  Google Scholar 

  40. Dao TP (2016) Multiresponse optimization of a compliant guiding mechanism using hybrid Taguchi-grey based fuzzy logic approach. Math Prob Eng. https://doi.org/10.1155/2016/5386893

    Article  Google Scholar 

  41. Huang SC, Dao TP (2016) Design and computational optimization of a flexure-based XY positioning platform using FEA-based response surface methodology. Int J Precis Eng Manuf 17(8):1035–1048

    Article  Google Scholar 

  42. Dao TP, Huang SC (2016) Design and analysis of a compliant micro-positioning platform with embedded strain gauges and viscoelastic damper. Microsyst Technol, 1–16

    Google Scholar 

  43. Huang SC, Dao TP (2016) Multi-objective optimal design of a 2-DOF flexure-based mechanism using hybrid approach of grey-taguchi coupled response surface methodology and entropy measurement. Arabian J Sci Eng 41(12):5215–5231

    Article  Google Scholar 

  44. Dhote S, Jean Z, Yang Z (2015) A nonlinear multi-mode wideband piezoelectric vibration-based energy harvester using compliant orthoplanar spring. Appl Phys Lett 106(16):163903

    Article  Google Scholar 

  45. Dhote S, Zhengbao Y, Jean Z (2018) Modeling and experimental parametric study of a tri-leg compliant orthoplanar spring based multi-mode piezoelectric energy harvester. Mech Syst Sig Process 98:268–280

    Article  Google Scholar 

  46. Bains PS, Singh S, Sidhu SS, Kaur S, Ablyaz TR (2018) Investigation of surface properties of Al–SiC composites in hybrid electrical discharge machining. In: Futuristic composites. Springer, Berlin, pp 181–196

    Chapter  Google Scholar 

  47. Bhui AS, Singh G, Sidhu SS, Bains PS (2018) Experimental investigation of optimal ED machining parameters for Ti-6Al-4 V biomaterial. FU Ser Mech Eng 16(3):337–345

    Article  Google Scholar 

  48. Sidhu SS, Bains PS, Yazdani M, Zolfaniab SH (2018) Application of MCDM techniques on nonconventional machining of composites. In: Futuristic composites. Springer, Berlin, pp 127–144

    Chapter  Google Scholar 

  49. Nguyen TT, Dao TP, Huang SC (2017) Biomechanical design of a novel six dof compliant prosthetic ankle-foot 2.0 for rehabilitation of amputee. ASME Int Des Eng Tech Conf Comp Info Eng, V05AT08A013–V05AT08A013

    Google Scholar 

  50. Nguyen TT, Le HG, Dao TP, Huang SC (2017) Evaluation of structural behaviour of a novel compliant prosthetic ankle-foot. IEEE Int Conf Mech Sys Cont Eng, 58–62

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanh-Phong Dao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dao, TP., Le Chau, N. (2019). Passive Prosthetic Ankle and Foot with Glass Fiber Reinforced Plastic: Biomechanical Design, Simulation, and Optimization. In: Bains, P., Sidhu, S., Bahraminasab, M., Prakash, C. (eds) Biomaterials in Orthopaedics and Bone Regeneration . Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-13-9977-0_6

Download citation

Publish with us

Policies and ethics