Skip to main content

Engineering of Bone: Uncovering Strategies of Static and Dynamic Environments

  • Chapter
  • First Online:
Biomaterials in Orthopaedics and Bone Regeneration

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

  • 628 Accesses

Abstract

A highly specialized connective tissue, bone, possesses inherent regenerative capacity. However, substantial degeneration and loss of bone due to bone tumour resections or traumatic injuries delay its healing, thereby suggesting alternate treatment options. Currently available treatments may offer repair to some extent; however, they are associated with certain disadvantages. Autografts fail under circumstances such as large bone loss and are associated with limited availability and donor site morbidity. Alternatives such as allografts are further associated with risk of immune rejection. Even if all of this pass, the limited availability of donors is unable to cover the associated clinical demands. In the search for bone repair and regeneration protocols, emergence of tissue engineering has greatly contributed to repair and regeneration of bone and bone-like complex tissues. Therefore, this chapter will uncover recent trends in bone tissue engineering with a focus on scaffolds, cells, growth factors and dynamic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ECM:

Extracellular matrix

3-D:

Three dimension

HAp:

Hydroxyapatite

Ti:

Titanium

PLA:

Polylactic acid

PGA:

Polyglycolic acid

PLGA:

Poly(lactic-co-glycolic acid)

PCL:

Polycaprolactone

PLCL:

Poly(lactide-co-ε-caprolactone

hADSCs:

Human adipose-derived stem cells

BMSCs:

Bone-marrow-derived MSCs

BSP:

Bone sialoprotein

TCP:

Tricalcium phosphate

ALP:

Alkaline phosphatase

CPC:

Calcium phosphate cement

hUCMSCs:

Human umblical cord-derived mesenchymal stem cells

PVA:

Polyvinyl alcohol

PEO:

Polyethylene oxide

PAA:

Polyacrylic acid

pDNA-NELL1:

Nel-like Type I molecular-1 DNA

hAFSCs:

Human amniotic fluid-derived stem cells

OX2:

Osterix

RUNX2:

Runt-related transcription factor 2

PEG:

Polyethylene glycol

RGD:

Arg-Gly-Asp

hESCd-MSC:

Human embryonic stem cell-derived mesenchymal stem cells

PEGDA:

Polyethylene glycol diacrylate

MSCs:

Mesenchymal stem cells

HOB:

Human osteoblast cells

ELR:

Elastin-like recombinamer

hESCs:

Human embryonic stem cells

iPSCs:

Induced pluripotent stem cells

BMP-2:

Bone morphogenetic protein 2

BMP-7:

Bone morphogenetic protein 7

TPS:

Tubular perfusion system

IL-1:

Interleukin-1

IL-6:

Interleukin-6

TNF-α:

Tumour necrosis factor alpha

FGF-2:

Fibroblast growth factor 2

M-CSF:

Macrophage colony-stimulating factor

PDGF:

Platelet-derived growth factor

BMPs:

Bone morphogenetic proteins

VEGF:

Vascular endothelial growth factor

TGF-β:

Transforming growth factor beta

IGFs:

Insulin-like growth factors

bFBF:

Basic fibroblast growth factor

LbL:

Layer by layer

MMP:

Matrix metalloproteinase

PD-MCG:

Polydopamine-coated multichannel biphasic calcium phosphate granule system

BCP:

Biphasic calcium phosphate scaffolds

CFD:

Computational fluid dynamics

RPM:

Rotations per minute

RWV:

Rotating wall vessel

EMF:

Electromagnetic field

PEMF:

Pulsed electromagnetic field

GMP:

Good manufacturing practice

Micro-CT:

Microcomputed tomography

CAD:

Computer-aided design

References

  1. Florencio-silva R, Rodrigues G, Sasso-cerri E (2015) Biology of bone tissue : structure, function, and factors that influence bone cells. Biomed Res Int. https://doi.org/10.1155/2015/421746

    Article  CAS  Google Scholar 

  2. Weiner S, Wagner HD (1998) The material bone: structure-mechanical function relations. Annu Rev Mater Sci 28:271–298

    Article  CAS  Google Scholar 

  3. Gordon JAR, Tye CE, Sampaio AV (2007) Bone sialoprotein expression enhances osteoblast differentiation and matrix mineralization in vitro. J Bone 41:462–473

    Article  CAS  Google Scholar 

  4. Kozhemyakina E, Lassar AB, Zelzer E (2015) A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation. Development 142:817–831

    Article  CAS  Google Scholar 

  5. Allen MR, Burr DB (2014) Bone modeling and remodeling. In: Burr DB, Allen MRBT-B ABB (eds) Academic Press, San Diego, pp 75–90

    Google Scholar 

  6. Gruber R, Koch H, Doll BA (2006) Fracture healing in the elderly patient. Exp Gerontol 41:1080–1093

    Article  Google Scholar 

  7. Gandhi A, Liporace F, Azad V (2006) Diabetic fracture healing. Foot Ankle Clin 11:805–824

    Article  Google Scholar 

  8. Wukich DK, Kline AJ (2008) The management of ankle fractures in patients with diabetes. J Bone Jt Surg–Am 90:1570–1578

    Article  Google Scholar 

  9. Lu C, Hansen E, Sapozhnikova A (2010) Effect of age on vascularization during fracture repair. J Orthop Res 26:1384–1389

    Article  Google Scholar 

  10. Mobini S, Ayoub A (2016) Bone tissue engineering in the maxillofacial region: the state-of-the- art practice and future prospects. Regen Reconstr Restor 1:8–14

    Google Scholar 

  11. Amini AR, Laurencin CT, Nukavarapu SP (2012) Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 40:363–408

    Article  Google Scholar 

  12. Delloye C, Cornu O, Druez V, Barbier O (2007) Bone allografts: what they can offer and what they cannot. J Bone Jt Surg 89–B:5:574–580

    Article  Google Scholar 

  13. Yeatts AB, Fisher JP (2011) Bone tissue engineering bioreactors: dynamic culture and the influence of shear stress. Bone 48:171–181

    Article  CAS  Google Scholar 

  14. Della Porta G, Nguyen BB, Campardelli R (2014) Synergistic effect of sustained release of growth factors and dynamic culture on osteoblastic differentiation of mesenchymal stem cells. J Biomed Mater Res Part A 103:2161–2171

    Google Scholar 

  15. Nguyen BB, Ko H, Moriarty RA (2016) dynamic bioreactor culture of high volume engineered bone tissue. Tissue Eng Part A 22:263–271

    Article  CAS  Google Scholar 

  16. Brien FJO (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14:88–95

    Article  CAS  Google Scholar 

  17. Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543

    Article  CAS  Google Scholar 

  18. Williams DF (2008) On the mechanisms of biocompatibility. Biomaterials 29:2941–2953

    Article  CAS  Google Scholar 

  19. Prasadh S, Chung R, Wong W (2018) Unraveling the mechanical strength of biomaterials used as a bone scaffold in oral and maxillofacial defects. Oral Sci Int 15:48–55

    Article  Google Scholar 

  20. Zhao H, Liang W (2017) A novel comby scaffold with improved mechanical strength for bone tissue engineering. Mater Lett 194:220–223

    Article  CAS  Google Scholar 

  21. Chen Y, Frith JE, Dehghan- A (2017) Mechanical properties and biocompatibility of porous titanium scaffolds for bone tissue engineering. J Mech Behav Biomed Mater 75:169–174

    Article  CAS  Google Scholar 

  22. Li G, Wang L, Pan W (2016) In vitro and in vivo study of additive manufactured porous Ti6Al4V scaffolds for repairing bone defects. Sci Rep 6:1–11

    Article  CAS  Google Scholar 

  23. Zhang X, Zeng D, Li N (2016) Functionalized mesoporous bioactive glass scaffolds for enhanced bone tissue regeneration. Sci Rep 6:19361

    Article  CAS  Google Scholar 

  24. Nisal A, Sayyad R, Dhavale P (2018) Silk fibroin micro-particle scaffolds with superior compression modulus and slow bioresorption for effective bone regeneration. Sci Rep 1–10

    Google Scholar 

  25. Persson M, Lehenkari PP, Berglin L (2018) Osteogenic differentiation of human mesenchymal stem cells in a 3D woven scaffold. Sci Rep 8:1–12

    Article  CAS  Google Scholar 

  26. Schieker M, Seitz H, Drosse I (2006) Biomaterials as scaffold for bone tissue engineering. Eur J Trauma 32:114–124

    Article  Google Scholar 

  27. Alaribe FN, Manoto SL, Motaung SCKM (2016) Scaffolds from biomaterials: advantages and limitations in bone and tissue engineering. Biologia (Bratisl) 71:353–366

    Article  Google Scholar 

  28. Puppi D, Chiellini F, Piras AM, Chiellini E (2010) Progress in polymer science polymeric materials for bone and cartilage repair. Prog Polym Sci 35:403–440

    Article  CAS  Google Scholar 

  29. Wang Z, Lin M, Xie Q (2016) Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration. Int J Nanomed 11:1483–1500

    CAS  Google Scholar 

  30. Zhang Y, Reddy VJ, Wong SY (2010) Enhanced biomineralization in osteoblasts on a novel electrospun biocomposite nanofibrous substrate. Tissue Eng Part A 16:1949–1960

    Article  CAS  Google Scholar 

  31. Jing Z, Wu Y, Su W (2017) carbon nanotube reinforced collagen/hydroxyapatite scaffolds improve bone tissue formation in vitro and in vivo. Ann Biomed Eng 45:2075–2087

    Article  Google Scholar 

  32. Chevalier J, Gremillard L (2009) Ceramics for medical applications: a picture for the next 20 years. J Eur Ceram Soc 29:1245–1255

    Article  CAS  Google Scholar 

  33. Thein-han W, Xu HHK (2011) Collagen-calcium phosphate cement scaffolds seeded with umbilical cord stem cells for bone tissue engineering. Tissue Eng Part A 17:2943–2954

    Article  CAS  Google Scholar 

  34. Bose S, Roy M, Bandyopadhyay A (2012) Recent advances in bone tissue engineering scaffolds. Trends Biotechnol 30:546–554

    Article  CAS  Google Scholar 

  35. Asaoka T, Ohtake S, Furukawa KS (2013) Development of bioactive porous a-TCP/HAp beads for bone tissue engineering. J Biomed Mater Res, Part A 101:3295–3300

    Google Scholar 

  36. Wu C, Chang J (2007) Degradation, bioactivity, and cytocompatibility of diopside, akermanite, and bredigite ceramics. J Biomed Mater Res Part B Appl Biomater 83B:153–160

    Article  CAS  Google Scholar 

  37. Fu Q, Saiz E, Rahaman MN, Tomsia AP (2011) Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Mater Sci Eng, C 31:1245–1256

    Article  CAS  Google Scholar 

  38. Xia L, Yin Z, Mao L (2016) Akermanite bioceramics promote osteogenesis, angiogenesis and suppress osteoclastogenesis for osteoporotic bone regeneration. Sci Rep 6:1–17

    Article  CAS  Google Scholar 

  39. Jones JR (2013) Review of bioactive glass: from Hench to hybrids. Acta Biomater 9:4457–4486

    Article  CAS  Google Scholar 

  40. Philippart A, Boccaccini AR, Fleck C (2015) Toughening and functionalization of bioactive ceramic and glass bone scaffolds by biopolymer coatings and infiltration: a review of the last 5 years. Expert Rev Med Devices 12:93–111

    Article  CAS  Google Scholar 

  41. Staiger MP, Pietak AM, Huadmai J, Dias G (2006) Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27:1728–1734

    Article  CAS  Google Scholar 

  42. Alvarez K, Nakajima H (2009) Metallic scaffolds for bone regeneration. Materials (Basel) 2:790–832

    Article  CAS  Google Scholar 

  43. Hussein MA, Mohammed AS, Al-aqeeli N, Arabia S (2015) Wear characteristics of metallic biomaterials: a review. Materials (Basel) 8:2749–2768

    Article  CAS  Google Scholar 

  44. Ghassemi T, Shahroodi A, Ebrahimzadeh MH, Mousavian A (2018) Current concepts in scaffolding for bone tissue engineering. Arch Bone Jt Surg 6:90–99

    Google Scholar 

  45. Bhui AS, Singh G, Sidhu SS, Bains PS (2018) Experimental investigation of optimal ED machining parameters for Ti-6Al-4V biomaterial. FU Ser Mech Eng 16(3):337–345

    Article  Google Scholar 

  46. Tamaddon M, Samizadeh S, Wang L (2017) Intrinsic osteoinductivity of porous titanium scaffold for bone tissue engineering. Int J Biomater 2017:5093063

    Article  CAS  Google Scholar 

  47. Bobe K, Willbold E, Morgenthal I (2013) In vitro and in vivo evaluation of biodegradable, open-porous scaffolds made of sintered magnesium W4 short fibres. Acta Biomater 9:8611–8623

    Article  CAS  Google Scholar 

  48. Wu C, Zhou Y, Xu M (2013) Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials 34:422–433

    Article  CAS  Google Scholar 

  49. Declercq HA, Desmet T, Dubruel P, Cornelissen MJ (2014) The role of scaffold architecture and composition on the bone formation by adipose-derived stem cells. Tissue Eng Part A 20:434–444

    Article  CAS  Google Scholar 

  50. Kim YE, Kim Y (2013) Effect of biopolymers on the characteristics and cytocompatibility of biocomposite nanofibrous scaffolds. Polym J 45:845–853

    Article  CAS  Google Scholar 

  51. Roohani-Esfahani SI, Newman P, Zreiqat H (2016) Design and fabrication of 3D printed scaffolds with a mechanical strength comparable to cortical bone to repair large bone defects. Sci Repor 1–8

    Google Scholar 

  52. Leite ÁJ, Oliveira NM, Song W, Mano JF (2018) Bioactive hydrogel marbles. Sci Rep 8:1–11

    Article  CAS  Google Scholar 

  53. Sato Y, Yamamoto K, Horiguchi S (2018) Nanogel tectonic porous 3D scaffold for direct reprogramming fibroblasts into osteoblasts and bone regeneration. Sci Rep 8:15824

    Article  CAS  Google Scholar 

  54. Nicodemus GD, Bryant SJ (2008) Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng Part B 14:149–165

    Article  CAS  Google Scholar 

  55. Short AR, Koralla D, Deshmukh A (2015) Hydrogels that allow and facilitate bone repair, remodeling, and regeneration. J Mater Chem B 3:7818–7830

    Article  CAS  Google Scholar 

  56. Tibbitt MW, Anseth KS (2009) Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng 103:655–663

    Article  CAS  Google Scholar 

  57. Yang X, Sun T, Dou S (2009) Block copolymer of polyphosphoester and poly (l-Lactic Acid) modified surface for enhancing osteoblast adhesion, proliferation, and function. Biomacromol 10:2213–2220

    Article  CAS  Google Scholar 

  58. Thambi T, Li Y, Lee DS (2017) Injectable hydrogels for sustained release of therapeutic agents. J Control Release 267:57–66

    Article  CAS  Google Scholar 

  59. Liu M, Zeng X, Ma C (2017) Injectable hydrogels for cartilage and bone tissue engineering. Bone Res 5:17014

    Article  CAS  Google Scholar 

  60. Han Y, Zeng Q, Li H, Chang J (2013) The calcium silicate/ alginate composite: preparation and evaluation of its behavior as bioactive injectable hydrogels. Acta Biomater 9:9107–9117

    Article  CAS  Google Scholar 

  61. Ding C, Zhao L, Liu F (2010) Dually responsive injectable hydrogel prepared by in situ cross-linking of glycol chitosan and benzaldehyde-capped PEO-PPO-PEO. Biomacromol 11:1043–1051

    Article  CAS  Google Scholar 

  62. Dessı M, Borzacchiello A, Mohamed THA (2013) Novel biomimetic thermosensitive b -tricalcium phosphate/ chitosan-based hydrogels for bone tissue engineering. J Biomed Mater Res - Part A 101:2984–2993

    Article  CAS  Google Scholar 

  63. Vo TN, Shah SR, Lu S (2016) Injectable dual-gelling cell-laden composite hydrogels for bone tissue engineering. Biomaterials 83:1–11

    Article  CAS  Google Scholar 

  64. Fu S, Ni P, Wang B (2012) Injectable and thermo-sensitive PEG-PCL-PEG copolymer/collagen/n-HA hydrogel composite for guided bone regeneration. Biomaterials 33:4801–4809

    Article  CAS  Google Scholar 

  65. Jiao Y, Gyawali D, Stark JM (2012) A rheological study of biodegradable injectable PEGMC/HA composite scaffolds. Soft Matter 8:1499–1507

    Article  CAS  Google Scholar 

  66. Niranjan R, Koushik C, Saravanan S (2013) A novel injectable temperature-sensitive zinc doped chitosan/beta-glycerophosphate hydrogel for bone tissue engineering. Int J Biol Macromol 54:24–29

    Article  CAS  Google Scholar 

  67. Douglas TEL, Piwowarczyk W, Pamula E (2014) Injectable self-gelling composites for bone tissue engineering based on gellan gum hydrogel enriched with different bioglasses. Biomed Mater 9:045014

    Article  CAS  Google Scholar 

  68. Dhivya S, Saravanan S, Sastry TP, Selvamurugan N (2015) Nanohydroxyapatite—reinforced chitosan composite hydrogel for bone tissue repair in vitro and in vivo. J Nanobiotechnology 13:40

    Article  CAS  Google Scholar 

  69. Lewandowska-ła J, Fiejdasz S, Rodzik Ł (2015) Bioactive hydrogel-nanosilica hybrid materials: a potential injectable scaffold for bone tissue engineering. Biomed Mater 10:015020

    Article  CAS  Google Scholar 

  70. Huang Y, Zhang X, Wu A, Xu H (2016) Injectable nano-hydroxyapatite (n-HA)/glycol chitosan(G-CS)/hyaluronic acid (HyA) composite hydrogel for bone tissue engineering. RSC Adv 6:33529–33536

    Article  CAS  Google Scholar 

  71. Tan R, She Z, Wang M (2012) Thermo-sensitive alginate-based injectable hydrogel for tissue engineering. Carbohydr Polym 87:1515–1521

    Article  CAS  Google Scholar 

  72. Celikkin N, Mastrogiacomo S, Jaroszewicz J, Walboomers XF (2018) Gelatin methacrylate scaffold for bone tissue engineering: the influence of polymer concentration. J Biomed Mater Res Part A 106A:201–209

    Article  CAS  Google Scholar 

  73. Ko W, Lee JS, Hwang Y (2018) Injectable hydrogel composite containing modified gold nanoparticles: implication in bone tissue regeneration. Int J Nanomedicine 13:7019–7031

    Article  Google Scholar 

  74. Arya N, Sardana V, Saxena M (2012) Recapitulating tumour microenvironment in chitosan-gelatin three-dimensional scaffolds: an improved in vitro tumour model. J R Soc Interface 9:3288–3302

    Article  CAS  Google Scholar 

  75. Bencherif SA, Braschler TM, Renaud P (2013) Advances in the design of macroporous polymer scaffolds for potential applications in dentistry. J Periodontal Implant Sci 43:251–261

    Article  CAS  Google Scholar 

  76. Elamparithi D, Moorthy V (2017) On various porous scaffold fabrication methods. Mapana J Sci 16:47–52

    Article  Google Scholar 

  77. Tamburaci S, Tihminlioglu F (2018) Materials science & engineering C Biosilica incorporated 3D porous scaffolds for bone tissue engineering applications. Mater Sci Eng, C 91:274–291

    Article  CAS  Google Scholar 

  78. Demirtas TT, Irmak G, Gümüşderelioglu M (2017) Bioprintable form of chitosan hydrogel for bone tissue engineering. Biofabrication 9:035003

    Article  CAS  Google Scholar 

  79. Moncal KK, Heo DN, Godzik KP (2018) 3D printing of poly (e-caprolactone)/poly (D, L-lactide-co-glycolide)/hydroxyapatite composite constructs for bone tissue engineering. J Mater Res 33:1972–1986

    Article  CAS  Google Scholar 

  80. Nandi SK, Fielding G, Banerjee D (2018) 3D-printed b-TCP bone tissue engineering scaffolds: effects of chemistry on in vivo biological properties in a rabbit tibia model. J Mater Res 33:1939–1947

    Article  CAS  Google Scholar 

  81. Zhang J, Chen Y, Xu J (2018) Tissue engineering using 3D printed nano-bioactive glass loaded with NELL1 gene for repairing alveolar bone defects. Regen Biomater 5:213–220

    Article  CAS  Google Scholar 

  82. Ma H, Feng C, Chang J, Wu C (2018) 3D-printed bioceramic scaffolds : from bone tissue engineering to tumor therapy. Acta Biomater 1–23

    Google Scholar 

  83. Jammalamadaka U, Tappa K (2018) Recent advances in biomaterials for 3D printing and tissue engineering. J Funct Biomater 9:14

    Article  CAS  Google Scholar 

  84. Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491

    Article  CAS  Google Scholar 

  85. Guda T, Walker JA, Singleton B (2014) Hydroxyapatite scaffold pore architecture effects in large bone defects in vivo. J Biomater Appl 28:1016–1027

    Article  CAS  Google Scholar 

  86. Gupte MJ, Swanson WB, Hu J (2018) Pore size directs bone marrow stromal cell fate and tissue regeneration in nanofibrous macroporous scaffolds by mediating vascularization. Acta Biomater 82:1–11

    Article  CAS  Google Scholar 

  87. Xu M, Zhai D, Chang J, Wu C (2014) In vitro assessment of three-dimensionally plotted nagelschmidtite bioceramic scaffolds with varied macropore morphologies. Acta Biomater 10:463–476

    Article  CAS  Google Scholar 

  88. Smith LA, Liu X, Ma PX (2008) Tissue engineering with nano-fibrous scaffolds. Soft Matter 4:2144–2149

    Article  CAS  Google Scholar 

  89. Liu H, Ding X, Zhou G (2013) Electrospinning of nanofibers for tissue engineering applications. J Nanomater 2013:495708

    Google Scholar 

  90. Lyu S, Huang C, Yang H, Zhang X (2013) Electrospun fibers as a scaffolding platform for bone tissue repair. J Orthop Res 31:1382–1389

    Article  CAS  Google Scholar 

  91. Guo Z, Xu J, Ding S (2015) In vitro evaluation of random and aligned polycaprolactone/gelatin fibers via eletrospinning for bone tissue engineering. J Biomater Sci Polym Ed 26:989–1001

    Article  CAS  Google Scholar 

  92. Wang Y, Cai X, Wang Y (2016) Enhanced osteogenesis of BMP2-Transfected human periodontal ligament stem cells by aligned electrospun scaffolds for bone tissue engineering. J Biomater Tissue Eng 6:563–573

    Article  Google Scholar 

  93. Chen H, Qian Y, Xia Y (2016) Enhanced osteogenesis of ADSCs by the synergistic effect of aligned fibers containing collagen I. ACS Appl Mater Interfaces 8:29289–29297

    Article  CAS  Google Scholar 

  94. Stevens MM (2008) Biomaterials for bone tissue engineering. Mater Today 11:18–25

    Article  CAS  Google Scholar 

  95. Turnbull G, Clarke J, Picard F (2018) 3D bioactive composite scaffolds for bone tissue engineering. Bioact Mater 3:278–314

    Article  Google Scholar 

  96. De Witte T, Fratila-apachitei LE, Zadpoor AA, Peppas NA (2018) Bone tissue engineering via growth factor delivery: from scaffolds to complex matrices. Regen Biomater 5:197–211

    Article  CAS  Google Scholar 

  97. Benoit DSW, Schwartz MP, Durney AR, Anseth KS (2008) Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nat Mater 7:816–823

    Article  CAS  Google Scholar 

  98. Arora A, Katti DS (2016) Understanding the influence of phosphorylation and polysialylation of gelatin on mineralization and osteogenic differentiation. Mater Sci Eng, C 65:9–18

    Article  CAS  Google Scholar 

  99. Jaidev LR, Chatterjee K (2019) Surface functionalization of 3D printed polymer scaffolds to augment stem cell response. Mater Des 161:44–54

    Article  CAS  Google Scholar 

  100. Yang F, Williams CG, Wang D-A (2005) The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells. Biomaterials 26:5991–5998

    Article  CAS  Google Scholar 

  101. Chen W, Zhou H, Weir MD (2012) Human embryonic stem cell-derived mesenchymal stem cell seeding on calcium phosphate cement-chitosan-RGD scaffold for bone repair. Tissue Eng Part A 21201:1–37

    Google Scholar 

  102. Beck G, Crichton HJ, Baer E (2014) Surface modifying oligomers used to functionalize polymeric surfaces: consideration of blood contact applications. J Appl Polym Sci 131:40328

    Google Scholar 

  103. Gümüsderelioglu M, Aday S (2011) Heparin-functionalized chitosan scaffolds for bone tissue engineering. Carbohydr Res 346:606–613

    Article  CAS  Google Scholar 

  104. Kim HD, Lee EA, An Y (2017) Chondroitin sulfate-based biomineralizing surface hydrogels for bone tissue engineering. ACS Appl Mater Interfaces 9:21639–21650

    Article  CAS  Google Scholar 

  105. Downey PA, Siegel MI (2006) Bone biology and the clinical implications for osteoporosis. Phys Ther 86:77–91

    Article  Google Scholar 

  106. Cancedda R, Giannoni P, Mastrogiacomo M (2007) A tissue engineering approach to bone repair in large animal models and in clinical practice. Biomaterials 28:4240–4250

    Article  CAS  Google Scholar 

  107. Heath CA (2000) Cells for tissue engineering. Trends Biotechnol 18:17–19

    Article  CAS  Google Scholar 

  108. Krampera M, Pizzolo G, Aprili G, Franchini M (2006) Mesenchymal stem cells for bone, cartilage, tendon and skeletal muscle repair. Bone 39:678–683

    Article  CAS  Google Scholar 

  109. Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8:726–736

    Article  CAS  Google Scholar 

  110. Hanson S, Souza RND, Hematti P (2014) Biomaterial-mesenchymal stem cell constructs for immunomodulation in composite tissue engineering. Tissue Eng Part A 20:2162–2168

    Article  Google Scholar 

  111. Nassif L, Jurjus A, Nassar J (2012) Enhanced in vivo bone formation by bone marrow differentiated mesenchymal stem cells grown in chitosan scaffold. J Bioeng Biomed Sci 2:2–7

    Article  CAS  Google Scholar 

  112. Yu L, Wu Y, Liu J (2018) 3D culture of bone marrow-derived mesenchymal stem cells (BMSCs) could improve bone regeneration in 3D-printed porous Ti6Al4V scaffolds. Stem Cells Int 2018:2074021

    Article  Google Scholar 

  113. Krampera M, Pasini A, Pizzolo G (2006) Regenerative and immunomodulatory potential of mesenchymal stem cells. Curr Opin Pharmacol 6:435–441

    Article  CAS  Google Scholar 

  114. Caplan AI (2007) Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 213:341–347

    Article  CAS  Google Scholar 

  115. Frese L, Dijkman E, Hoerstrup SP (2016) Adipose tissue-derived stem cells in regenerative medicine. Transfus Med Hemotherapy 43:268–274

    Article  Google Scholar 

  116. Calabrese G, Giuff R, Forte S (2017) Human adipose-derived mesenchymal stem cells seeded into a collagen-hydroxyapatite scaffold promote bone augmentation after implantation in the mouse. Sci Rep 7:7110

    Article  CAS  Google Scholar 

  117. Sayin E, Rashid RH, Rodríguez-Cabello JC (2017) Human adipose derived stem cells are superior to human osteoblasts (HOB) in bone tissue engineering on a collagen- fibroin-ELR blend. Bioact Mater 1–11

    Google Scholar 

  118. Oryan A, Kamali A, Moshiri A, Eslaminejad MB (2017) Role of mesenchymal stem cells in bone regenerative medicine: what is the evidence? Cells Tissues Organs 204:59–83

    Article  CAS  Google Scholar 

  119. Yu J, Wang Y, Deng Z (2007) Odontogenic capability: bone marrow stromal stem cells versus dental pulp stem cells. Biol Cell 99:465–474

    Article  CAS  Google Scholar 

  120. El-gendy R, Yang XB, Newby PJ (2013) Osteogenic differentiation of human dental pulp stromal cells on 45S5 bioglass based scaffolds in vitro and in vivo. Tissue Eng Part A 19:707–715

    Article  CAS  Google Scholar 

  121. Petridis X, Diamanti E, Trigas GC, Kalyvas D (2015) Bone regeneration in critical-size calvarial defects using human dental pulp cells in an extracellular matrix-based scaffold. J Craniomaxillofac Surg

    Google Scholar 

  122. La M, Paino F, Spina A (2014) Dental pulp stem cells: state of the art and suggestions for a true translation of research into therapy. J Dent 42:761–768

    Article  CAS  Google Scholar 

  123. Tian X, Heng B, Ge Z (2008) Comparison of osteogenesis of human embryonic stem cells within 2D and 3D culture systems. Scand J Clin Lab Investig 68:58–67

    Article  CAS  Google Scholar 

  124. De Peppo GM, Marcos-campos I, John D (2013) Engineering bone tissue substitutes from human induced pluripotent stem cells. Proc Natl Acad Sci 110:8680–8685

    Article  Google Scholar 

  125. Marolt D, Marcos I, Bhumiratana S (2012) Engineering bone tissue from human embryonic stem cells. Proc Natl Acad Sci 109:1–5

    Article  Google Scholar 

  126. Vats A, Tolley NS, Bishop AE, Polak JM (2005) Embryonic stem cells and tissue engineering: delivering stem cells to the clinic. J R Soc Med 98:346–350

    Article  CAS  Google Scholar 

  127. Swijnenburg R, Schrepfer S, Govaert JA (2008) Immunosuppressive therapy mitigates immunological rejection of human embryonic stem cell xenografts. Proc Natl Acad Sci 105:12991–12996

    Article  CAS  Google Scholar 

  128. Wu Q, Yang B, Hu K (2017) Deriving osteogenic cells from induced pluripotent stem cells for bone tissue engineering. Tissue Eng Part B Rev 23:1–8

    Article  Google Scholar 

  129. Jin G, Kim T, Kim J (2012) Bone tissue engineering of induced pluripotent stem cells cultured with macrochanneled polymer scaffold. J Biomed Mater Res Part A 101:1283–1291

    Google Scholar 

  130. Hayashi K, Ochiai-shino H, Shiga T (2016) Transplantation of human-induced pluripotent stem cells carried by self-assembling peptide nanofi ber hydrogel improves bone regeneration in rat calvarial bone defects. BDJOpen 2:1–7

    Google Scholar 

  131. Csobonyeiova M, Polak S, Zamborsky R, Danisovic L (2017) iPS cell technologies and their prospect for bone regeneration and disease modeling: a mini review. J Adv Res 8:321–327

    Article  CAS  Google Scholar 

  132. Xie J, Peng C, Zhao Q (2015) Osteogenic differentiation and bone regeneration of the iPSC-mscs supported by a biomimetic nanofibrous scaffold. Acta Biomater 29:365–379

    Article  CAS  Google Scholar 

  133. Jung Y, Bauer G, Nolta JA (2012) Concise review: induced pluripotent stem cell-derived mesenchymal stem cells: progress toward safe clinical products. Stem Cells 30:42–47

    Article  CAS  Google Scholar 

  134. Reible B, Schmidmaier G, Prokscha M, Westhauser F (2017) Continuous stimulation with differentiation factors is necessary to enhance osteogenic differentiation of human mesenchymal stem cells. Growth Factors 35:179–188

    Article  CAS  Google Scholar 

  135. Kimelman N, Pelled G, Helm GA (2007) Review: gene- and stem cell-based therapeutics for bone regeneration and repair. Tissue Eng 13:1135–1150

    Article  CAS  Google Scholar 

  136. Huynh NPT, Brunger JM, Gloss CC (2018) Genetic engineering of mesenchymal stem cells for differential matrix deposition on 3D woven scaffolds. Tissue Eng Part A 00:1–14

    Google Scholar 

  137. Kuttappan S, Anitha A, Minsha MG (2018) BMP2 expressing genetically engineered mesenchymal stem cells on composite fibrous scaffolds for enhanced bone regeneration in segmental defects. Mater Sci Eng, C 85:239–248

    Article  CAS  Google Scholar 

  138. Kargozar S, Hashemian SJ, Soleimani M (2017) Acceleration of bone regeneration in bioactive glass/gelatin composite scaffolds seeded with bone marrow-derived mesenchymal stem cells over-expressing bone morphogenetic protein-7. Mater Sci Eng, C 75:688–698

    Article  CAS  Google Scholar 

  139. Sayed N, Liu C, Wu JC (2016) Translation of human-induced pluripotent stem cells from clinical trial in a dish to precision medicine. J Am Coll Cardiol 67:2161–2176

    Article  Google Scholar 

  140. Martin U (2017) Therapeutic application of pluripotent stem cells: challenges and risks. Front Med 4:229

    Article  Google Scholar 

  141. Raggatt LJ, Partridge NC (2010) Cellular and molecular mechanisms of bone remodeling. J Biol Chem 285:25103–25108

    Article  CAS  Google Scholar 

  142. Kook Y, Jeong Y, Lee K, Koh W (2017) Design of biomimetic cellular scaffolds for co-culture system and their application. J Tissue Eng 8:1–17

    Article  CAS  Google Scholar 

  143. Beşkardeş IG, Hayden RS, Glettig DL (2017) Bone tissue engineering with scaffold-supported perfusion co-cultures of human stem cell-derived osteoblasts and cell line-derived osteoclasts. Process Biochem 59:303–311

    Article  CAS  Google Scholar 

  144. Jeon OH, Panicker LM, Lu Q (2016) Human iPSC-derived osteoblasts and osteoclasts together promote bone regeneration in 3D biomaterials. 1–11

    Google Scholar 

  145. Lovett M, Ph D, Lee K (2009) Vascularization strategies for tissue engineering. Tissue Eng Part B 15:353–370

    Article  CAS  Google Scholar 

  146. Gurel G, Torun G, Hasirci V (2016) In fl uence of co-culture on osteogenesis and angiogenesis of bone marrow mesenchymal stem cells and aortic endothelial cells. Microvasc Res 108:1–9

    Article  CAS  Google Scholar 

  147. Jin G, Kim H (2017) Co-culture of human dental pulp stem cells and endothelial cells using porous biopolymer microcarriers: a feasibility study for bone tissue engineering. Tissue Eng anf Regen Med 14:393–401

    Article  CAS  Google Scholar 

  148. Nguyen BB, Moriarty RA, Kamalitdinov T (2018) Collagen hydrogel scaffold promotes mesenchymal stem cell and endothelial cell coculture for bone tissue engineering. J Biomed Mater Res Part A 105:1123–1131

    Article  CAS  Google Scholar 

  149. Lee K, Silva EA, Mooney DJ (2011) Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J R Soc Interface 8:153–170

    Article  CAS  Google Scholar 

  150. Canalis E (2009) Prospect-growth factor control of bone mass. J Cell Biochem 108:769–777

    Article  CAS  Google Scholar 

  151. Li F, Niyibizi C (2012) Cells derived from murine induced pluripotent stem cells (iPSC) by treatment with members of TGF-beta family give rise to osteoblasts differentiation and form bone in vivo. BMC Cell Biol 13:35

    Article  CAS  Google Scholar 

  152. Nyberg E, Holmes C, Witham T, Grayson WL (2015) Growth factor-eluting technologies for bone tissue engineering. Drug Deliv Transl Res 6:184–194

    Article  CAS  Google Scholar 

  153. Vo TN, Kasper FK, Mikos AG (2012) Strategies for controlled delivery of growth factors and cells for bone regeneration. Adv Drug Deliv Rev. https://doi.org/10.1016/j.addr.2012.01.016

    Article  CAS  Google Scholar 

  154. Hankenson K, Gagne K, Shaughnessy M (2015) Extracellular signaling molecules to promote fracture healing and bone regeneration. Adv Drug Deliv Rev 94:3–12. https://doi.org/10.1016/j.addr.2015.09.008

    Article  CAS  Google Scholar 

  155. Lienemann PS, Lutolf MP, Ehrbar M (2012) Biomimetic hydrogels for controlled biomolecule delivery to augment bone regeneration. Adv Drug Deliv Rev 64:1078–1089

    Article  CAS  Google Scholar 

  156. Kowalczewski CJ, Saul JM (2018) Biomaterials for the delivery of growth factors and other therapeutic agents in tissue engineering approaches to bone regeneration. Front Pharmacol 9:513

    Article  CAS  Google Scholar 

  157. Marenzana M, Arnett TR (2013) The key role of the blood supply to bone. Bone Res 1:203–215

    Article  CAS  Google Scholar 

  158. Nauta TD, Van Hinsbergh VWM, Koolwijk P (2014) Hypoxic signaling during tissue repair and regenerative medicine. Int J Mol Sci 15:19791–19815

    Article  CAS  Google Scholar 

  159. Mercado-Pagan AE, Stahl AM, Shanjani Y, Yang Y (2015) Vascularization in bone tissue engineering constructs. Ann Biomed Eng 43:718–729

    Article  Google Scholar 

  160. Nikitovic D, Zafiropoulos A, Tzanakakis GN (2005) Effects of glycosaminoglycans on cell proliferation of normal osteoblasts and human osteosarcoma cells depend on their type and fine chemical compositions. Anticancer Res 25:2851–2856

    CAS  Google Scholar 

  161. Nauth A, Ristevski B, Li R, Schemitsch EH (2011) Growth factors and bone regeneration: how much bone can we expect? Injury 42:574–579

    Article  Google Scholar 

  162. Farokhi M, Mottaghitalab F, Shokrgozar MA (2016) Importance of dual delivery systems for bone tissue engineering. J Control Release 225:152–169

    Article  CAS  Google Scholar 

  163. Carragee EJ, Comer G, Chu G (2013) Cancer risk after use of recombinant bone. J Bone Jt Surg 95:1537–1545

    Article  Google Scholar 

  164. Wang W, Yeung KWK (2017) Bioactive materials bone grafts and biomaterials substitutes for bone defect repair: a review. Bioact Mater 2:224–247

    Article  Google Scholar 

  165. Fernandez-Yague MA, Abbah SA, McNamara L (2014) Biomimetic approaches in bone tissue engineering: integrating biological and physicomechanical strategies. Adv Drug Deliv Rev 84:1–29

    Article  CAS  Google Scholar 

  166. Brown KV, Lon M, Li B (2011) Improving bone formation in a rat femur segmental defect by controlling bone morphogenetic protein-2 release. Tissue Eng Part A 17:1735–1746

    Article  CAS  Google Scholar 

  167. Ziegler J, Anger D, Krummenauer F (2007) Biological activity of recombinant human growth factors released from biocompatible bone implants. https://doi.org/10.1002/jbm.a.31625

    Article  CAS  Google Scholar 

  168. Murphy WL, Peters MC, Kohn DH, Mooney DJ (2000) Sustained release of vascular endothelial growth factor from mineralized poly (lactide-co-glycolide) scaffolds for tissue engineering. Biomater 21:2521–2527

    Article  CAS  Google Scholar 

  169. Reyes R, De B, Delgado A (2012) Effect of triple growth factor controlled delivery by a brushite—PLGA system on a bone defect. Injury 43:334–342

    Article  Google Scholar 

  170. Wang Y, Angelatos AS, Caruso F (2008) Template synthesis of nanostructured materials via layer-by-layer. Chem Mater 20:848–858

    Article  CAS  Google Scholar 

  171. Wang Z, Wang Z, Lu WW (2017) Novel biomaterial strategies for controlled growth factor delivery for biomedical applications. NPG Asia Mater 9:e435

    Article  CAS  Google Scholar 

  172. Richardson JJ, Björnmalm M, Caruso F (2015) Technology-driven layer-by-layer assembly of nanofilms. Science 80(348):411–424

    Google Scholar 

  173. Macdonald ML, Samuel RE, Shah NJ (2011) Tissue integration of growth factor-eluting layer-by-layer polyelectrolyte multilayer coated implants. Biomaterials 32:1446–1453

    Article  CAS  Google Scholar 

  174. Shah NJ, Macdonald ML, Beben YM (2011) Tunable dual growth factor delivery from polyelectrolyte multilayer films. Biomaterials 32:6183–6193

    Article  CAS  Google Scholar 

  175. Bouyer M, Guillot R, Jonathan L (2016) Surface delivery of tunable doses of BMP-2 from an adaptable polymeric scaffold induces volumetric bone regeneration. Biomaterials 104:168–181

    Article  CAS  Google Scholar 

  176. Newman MR, Benoit DSW (2016) Local and targeted drug delivery for bone regeneration. Curr Opin Biotechnol 40:125–132

    Article  CAS  Google Scholar 

  177. Draenert FG, Nonnenmacher A, Ka PW (2012) BMP-2 and bFGF release and in vitro effect on human osteoblasts after adsorption to bone grafts and biomaterials. Clin Oral Implant Res 24:750–757

    Article  Google Scholar 

  178. Masters KS (2011) Covalent growth factor immobilization strategies for tissue repair and regeneration. Macromol Biosci 11:1149–1163

    Article  CAS  Google Scholar 

  179. Di Luca A, Klein-gunnewiek M, Vancso JG (2017) Covalent binding of bone morphogenetic protein-2 and transforming growth factor-β3 to 3D plotted scaffolds for osteochondral tissue regeneration. Biotechnol J 12:1700072

    Article  CAS  Google Scholar 

  180. Madl CM, Mehta M, Duda GN (2013) Presentation of BMP-2 mimicking peptides in 3D hydrogels directs cell fate commitment in osteoblasts and mesenchymal stem cells. Biomacromol 15:445–455

    Article  CAS  Google Scholar 

  181. Karageorgiou V, Meinel L, Hofmann S (2004) Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells. J Biomed Mater Res Part A 71A:528–537

    Article  CAS  Google Scholar 

  182. Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science (80-) 318:426–431

    Article  CAS  Google Scholar 

  183. Lee GH, Paul K, Lee B (2017) Development of BMP-2 immobilized polydopamine mediated multichannelled biphasic calcium phosphate granules for improved bone regeneration. Mater Lett 208:122–125

    Article  CAS  Google Scholar 

  184. Geiger M, Li RH, Friess W (2003) Collagen sponges for bone regeneration with rhBMP-2. Adv Drug Deliv Rev 55:1613–1629

    Article  CAS  Google Scholar 

  185. Upton Z, Cuttle L, Noble A (2008) Vitronectin: growth factor complexes hold potential as a wound therapy approach. J Invest Dermatol 128:1534–1544

    Article  CAS  Google Scholar 

  186. Schultz GS, Wysocki A (2009) Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regen 17:153–162

    Article  Google Scholar 

  187. Martino MM, Briquez PS, Ranga A (2013) Heparin-binding domain of fibrin(ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix. Proc Natl Acad Sci 110:4563–4568

    Article  CAS  Google Scholar 

  188. Yue B (2014) Biology of the extracellular matrix: an overview. J Glaucoma 23:S20–S23

    Article  Google Scholar 

  189. Capila I, Linhardt RJ (2002) Heparin-protein interactions. Angew Chem Int Ed 41:390–412

    Article  CAS  Google Scholar 

  190. Macri L, Silverstein D, Clark RAF (2007) Growth factor binding to the pericellular matrix and its importance in tissue engineering. Adv Drug Deliv Rev 59:1366–1381

    Article  CAS  Google Scholar 

  191. Billings PC, Yang E, Mundy C, Pacifici M (2018) Domains with highest heparan sulfate-binding affinity reside at opposite ends in BMP2/4 versus BMP5/6/7: implications for function. J Biol Chem 293:14371–14383

    Article  CAS  Google Scholar 

  192. Kim T, Yun Y, Park Y, Lee S (2014) In vitro and in vivo evaluation of bone formation using solid freeform fabrication-based bone morphogenic protein-2 releasing PCL/PLGA scaffolds. Biomed Mater 9:025008

    Article  CAS  Google Scholar 

  193. Martino MM, Tortelli F, Mochizuki M (2011) Engineering the growth factor microenvironment with fibronectin domains to promote wound and bone tissue healing. Sci Transl Med 3:100ra89

    Article  CAS  Google Scholar 

  194. Sakiyama-elbert SE, Hubbell JA (2000) Development of fibrin derivatives for controlled release of heparin-binding growth factors. J Control Release 65:389–402

    Article  CAS  Google Scholar 

  195. Jha AK, Mathur A, Svedlund FL (2015) Molecular weight and concentration of heparin in hyaluronic acid-based matrices modulates growth factor retention kinetics and stem cell fate. J Control Release 209:308–316

    Article  CAS  Google Scholar 

  196. Vieira S, Vial S, Reis RL, Oliveira JM (2017) Nanoparticles for bone tissue engineering. Biotechnol Prog 33:590–611

    Article  CAS  Google Scholar 

  197. Chiellini F, Piras AM, Errico C (2008) Micro/nanostructured polymeric systems for biomedical and pharmaceutical applications. Nanomedicine 3:367–393

    Article  CAS  Google Scholar 

  198. Wang Z, Wang K, Lu X (2014) BMP-2 encapsulated polysaccharide nanoparticle modified biphasic calcium phosphate scaffolds for bone tissue regeneration. J Biomed Mater Res Part A 103:1520–1532

    Article  CAS  Google Scholar 

  199. Kim B, Yang S, Sang C (2018) Incorporation of BMP-2 nanoparticles on the surface of a 3D-printed hydroxyapatite scaffold using an ε -polycaprolactone polymer emulsion coating method for bone tissue engineering. Colloids Surf B 170:421–429

    Article  CAS  Google Scholar 

  200. Eimori K, Endo N, Uchiyama S, Takahashi Y (2016) Disrupted bone metabolism in long-term bedridden patients. PLoS ONE 11:e0156991

    Article  CAS  Google Scholar 

  201. Wittkowske C, Reilly GC, Lacroix D, Perrault CM (2016) In vitro bone cell models: impact of fluid shear stress on bone formation. Front Bioeng Biotechnol 4:87

    Article  Google Scholar 

  202. Mishra R, Bishop T, Valerio IL (2016) The potential impact of bone tissue engineering in the clinic. Regen Med 11:571–587

    Article  CAS  Google Scholar 

  203. Volkmer E, Drosse I, Otto S (2008) Hypoxia in static and dynamic 3D culture systems for tissue engineering of bone. Tissue Eng Part A 14:1331–1340

    Article  CAS  Google Scholar 

  204. Grellier M, Bareille R, Bourget C (2009) Responsiveness of human bone marrow stromal cells to shear stress. J Tissue Eng Regen Med 2:302–309

    Article  CAS  Google Scholar 

  205. Yourek G, McCormick SM, Mao JJ, Reilly GC (2010) Shear stress induces osteogenic differentiation of human mesenchymal stem cells. Regen Med 5:713–724

    Article  CAS  Google Scholar 

  206. Singh H, Hutmacher DW (2009) Bioreactor studies and computational fluid dynamics. In: Advances in biochemical engineering/biotechnology series, pp 231–250

    Chapter  Google Scholar 

  207. Rauh J, Ph D, Milan F (2011) Bioreactor systems for bone tissue engineering. Tissue Eng Part B Rev 17:263–280

    Article  CAS  Google Scholar 

  208. Sladkova M, De Peppo GM (2014) Bioreactor systems for human bone tissue engineering. Processes 2:494–525

    Article  CAS  Google Scholar 

  209. Martin I, Wendt D, Heberer M (2004) The role of bioreactors in tissue engineering. Trends Biotechnol 22:10–12

    Article  CAS  Google Scholar 

  210. Gaspar DA, Gomide V, Monteiro FJ (2012) The role of perfusion bioreactors in bone tissue engineering the role of perfusion bioreactors in bone tissue engineering. Biomatter 2:1–9

    Article  Google Scholar 

  211. Sikavitsas VI, Bancroft GN, Mikos AG (2002) Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor. J Biomed Mater Res 62:136–148

    Article  CAS  Google Scholar 

  212. Meinel L, Karageorgiou V, Fajardo R (2004) Bone tissue engineering using human mesenchymal stem cells: effects of scaffold material and medium flow. Ann Biomed Eng 32:112–122

    Article  Google Scholar 

  213. Kim HJ, Kim U, Leisk GG (2007) Bone regeneration on macroporous aqueous-derived silk 3-D scaffolds. Macromol Biosci 7:643–655

    Article  CAS  Google Scholar 

  214. Stiehler M, Bunger C, Baatrup A (2008) Effect of dynamic 3-D culture on proliferation, distribution, and osteogenic differentiation of human mesenchymal stem cells. J Biomed Mater Res, Part A 89:96–107

    Google Scholar 

  215. Song K, Liu T, Cui Z (2007) Three-dimensional fabrication of engineered bone with human bio-derived bone scaffolds in a rotating wall vessel bioreactor. J Biomed Mater Res, Part A 86A:323–332

    Article  CAS  Google Scholar 

  216. Wang T, Wu H, Wang H (2009) Regulation of adult human mesenchymal stem cells into osteogenic and chondrogenic lineages by different bioreactor systems. J Biomed Mater Res, Part A 88A:935–946

    Article  CAS  Google Scholar 

  217. Mccoy RJ, Eng D, Brien FJO, Ph D (2010) Influence of shear stress in perfusion bioreactor cultures for the development of three-dimensional bone tissue constructs: a review. Tissue Eng Part B 16:587–601

    Article  CAS  Google Scholar 

  218. Wang Y, Uemura T, Dong J (2003) Application of perfusion culture system improves in vitro and in vivo osteogenesis of bone marrow-derived osteoblastic cells in porous ceramic materials. Tissue Eng 9:1205–1214

    Article  CAS  Google Scholar 

  219. Bancroft GN, Sikavitsas VI, Mikos AG (2003) Design of a flow perfusion bioreactor system for bone tissue-engineering applications. Tissue Eng 9:549–554

    Article  CAS  Google Scholar 

  220. Bhaskar B, Owen R, Bahmaee H (2017) Design and assessment of a dynamic perfusion bioreactor for large bone tissue engineering scaffolds. Appl Biochem Biotechnol 185:555–563

    Article  CAS  Google Scholar 

  221. Bouet G, Marchat D, Cruel M (2015) In vitro three-dimensional bone tissue models: from cells to controlled and dynamic environment. Tissue Eng Part B 21:133–156

    Article  Google Scholar 

  222. Nokhbatolfoghahaei H, Rad MR, Khani M-M (2017) Application of bioreactors to improve functionality of bone tissue engineering constructs: a systematic review. Curr Stem Cell Res Ther 12:564–599

    Article  CAS  Google Scholar 

  223. Matziolis D, Tuischer J, Matziolis G (2011) Osteogenic predifferentiation of human bone marrow-derived stem cells by short-term mechanical stimulation. Open Orthop J 5:1–6

    Article  Google Scholar 

  224. Bölgen N, Yang Y, Korkusuz P (2008) Three-dimensional ingrowth of bone cells within biodegradable cryogel scaffolds in bioreactors at different regimes. Tissue Eng Part A 14:1743–1750

    Article  Google Scholar 

  225. Aaron RK, Ciombor DM, Simon BJ (2004) Treatment of nonunions with electric and electromagnetic fields. Clin Orthop Relat Res 02906:21–291

    Article  Google Scholar 

  226. Chalidis B, Sachinis N, Hospital SM, Hospital AG (2011) Stimulation of bone formation and fracture healing with pulsed electromagnetic fields: biologic responses and clinical implications. Int J Immunopathol Pharmacol 24:17–20

    Article  CAS  Google Scholar 

  227. Funk RHW, Monsees T, Nurdan O (2009) Electromagnetic effects-from cell biology to medicine. Prog Histochem Cytochem 43:177–264

    Article  CAS  Google Scholar 

  228. Sun L, Hsieh D, Lin P (2010) Pulsed electromagnetic fields accelerate proliferation and osteogenic gene expression in human bone marrow mesenchymal stem cells during osteogenic differentiation. Bioelectromagnetics 31:209–219

    Article  CAS  Google Scholar 

  229. Tsai M, Chang WH, Chang K (2007) Pulsed electromagnetic fields affect osteoblast proliferation and differentiation in bonetissue engineering. Bioelectromagnetics 28:519–528

    Article  CAS  Google Scholar 

  230. Fassina L, Visai L, De Angelis MGC (2007) Surface modification of a porous polyurethane through a culture of human osteoblasts and an electromagnetic bioreactor. Technol Heal Care 15:33–45

    CAS  Google Scholar 

  231. Liu C, Abedian R, Meister R (2012) Influence of perfusion and compression on the proliferation and differentiation of bone mesenchymal stromal cells seeded on polyurethane scaffolds. Biomaterials 33:1052–1064

    Article  CAS  Google Scholar 

  232. Petri M, Ufer K, Toma I (2012) Effects of perfusion and cyclic compression on in vitro tissue engineered meniscus implants. Knee Surg, Sport Traumatol Arthrosc 20:223–231

    Article  CAS  Google Scholar 

  233. Kang KS, Hong JM, Jeong YH (2014) Combined effect of three types of biophysical stimuli for bone regeneration. Tissue Eng Part A 20:1767–1777

    Article  Google Scholar 

  234. Huang R-L, Liu K, Li Q (2016) Bone regeneration following the in vivo bioreactor principle: is in vitro manipulation of exogenous elements still needed? Regen Med 11:475–481

    Article  CAS  Google Scholar 

  235. Huang R, Kobayashi E, Liu K, Li Q (2016) Bone graft prefabrication following the in vivo bioreactor principle. EBioMedicine 12:43–54

    Article  Google Scholar 

  236. Tatara AM, Wong ME, Mikos AG (2014) In vivo bioreactors for mandibular reconstruction. J Dent Res 93:1196–1202

    Article  CAS  Google Scholar 

  237. Stevens MM, Marini RP, Schaefer D (2005) In vivo engineering of organs: the bone bioreactor. Proc Natl Acad Sci 102:11450–11455

    Article  CAS  Google Scholar 

  238. Holt GE, Halpern JL, Dovan TT (2005) Evolution of an in vivo bioreactor. J Orthop Res 23:916–923

    Article  CAS  Google Scholar 

  239. Huang R-L, Tremp M, Ho C-K (2017) Prefabrication of a functional bone graft with a pedicled periosteal flap as an in vivo bioreactor. Sci Rep 7:1–11

    Article  CAS  Google Scholar 

  240. Zhang H, Mao X, Zhao D (2017) Three dimensional printed polylactic acid-hydroxyapatite composite scaffolds for prefabricating vascularized tissue engineered bone: an in vivo bioreactor model. Sci Rep 7:1–13

    Article  CAS  Google Scholar 

  241. Akar B, Tatara AM, Sutradhar A (2018) Large animal models of an in vivo bioreactor for engineering. Tissue Eng 24:317–325

    Article  Google Scholar 

  242. Cheng M-H, Brey EM, Allori AC (2009) Periosteum-guided prefabrication of vascularized bone of clinical shape and volume. Plast Reconstr Surg 124:787–795

    Article  CAS  Google Scholar 

  243. Brey EM, Cheng M-H, Allori A (2007) Comparison of guided bone formation from periosteum and muscle fascia. Plast Reconstr Surg 119:1216–1222

    Article  CAS  Google Scholar 

  244. Cheng M, Brey EM, Ph D (2005) Ovine model for engineering bone segments. Tissue Eng 11:214–225

    Article  CAS  Google Scholar 

  245. Warnke PH, Springer ING, Wiltfang J (2004) Growth and transplantation of a custom vascularised bone graft in a man. Lancet 364:766–770

    Article  CAS  Google Scholar 

  246. Wiltfang J, Rohnen M, Egberts A-H (2016) Man as a living bioreactor: prefabrication of a custom vascularized bone graft in the gastrocolic omentum. Tissue Eng Part C Methods 22:740–746

    Article  CAS  Google Scholar 

  247. Warnke PH, Kosmahl M, Russo PAJ (2006) Man as living bioreactor: fate of an exogenously prepared customized tissue-engineered mandible. Biomaterials 27:3163–3167

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neha Arya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thilakan, J., Mishra, R., Goel, S.K., Arya, N. (2019). Engineering of Bone: Uncovering Strategies of Static and Dynamic Environments. In: Bains, P., Sidhu, S., Bahraminasab, M., Prakash, C. (eds) Biomaterials in Orthopaedics and Bone Regeneration . Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-13-9977-0_12

Download citation

Publish with us

Policies and ethics