Skip to main content

Parametric Evaluation of Medical Grade Titanium Alloy in MWCNTs Mixed Dielectric Using Graphite Electrode

  • Chapter
  • First Online:
Biomaterials in Orthopaedics and Bone Regeneration

Abstract

Titanium alloys are the most dominating biomaterial in the field of orthopedic implants as they inhibit high strength-to-weight ratio, resistance toward wear and corrosion. It has been observed that after certain years of implantation, the implant exhibits corrosion and toxicity in the human body environment. Surface modification provides a novel technique to overcome these issues. In the present work, optimum EDM working parameters were investigated for the surface alteration of Ti-6Al-4V with MWCNTs mixed dielectric using a graphite tool with reverse polarity. Arcing was observed for discharge current above 4 Amps. Concentration of MWCNTs in the dielectric medium above 7 g/l exhibited unstable machining. In conclusions, lower current intensity, low MWCNTs concentration, and high pulse-off time demonstrated arc-free and stable machining of Ti-6Al-4V. SEM revealed a crack-free homogeneous porous surface that facilitates bioactivity. XRD exhibited the deposition of carbon and formation of carbides and intermetallic compounds on the EDMed surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bains PS, Sidhu SS, Payal HS (2018) Investigation of magnetic field-assisted EDM of composites. Mater Manuf Processes 33(6):670–675

    Article  Google Scholar 

  2. Kumar S, Singh R, Singh TP, Sethi BL (2009) Surface modification by electrical discharge machining: a review. J Mater Process Technol 209(8):3675–3687

    Article  CAS  Google Scholar 

  3. Bains PS, Sidhu SS, Payal HS (2016) Fabrication and machining of metal matrix composites: a review. Mater Manuf Processes 31(5):553–573

    Article  CAS  Google Scholar 

  4. Mai C, Hocheng H, Huang S (2012) Advantages of carbon nanotubes in electrical discharge machining. Int J Adv Manuf Technol 59:111–117

    Article  Google Scholar 

  5. Bains PS, Singh S, Sidhu SS, Kaur S, Ablyaz TR (2018) Investigation of surface properties of Al–SiC composites in hybrid electrical discharge machining. Futuristic composites. Springer, Berlin, pp 181–196

    Chapter  Google Scholar 

  6. Sidhu SS, Bains PS, Yazdani M, Zolfaniab SH (2018) Application of MCDM techniques on nonconventional machining of composites. Futuristic composites. Springer, Berlin, pp 127–144

    Chapter  Google Scholar 

  7. Peng PW, Ou KL, Lin HC, Pan YN, Wang CH (2010) Effect of electrical-discharging on formation of nanoporous biocompatible layer on titanium. J Alloys Compd 492:625–630

    Article  CAS  Google Scholar 

  8. Szaraniec B, Pielichowska K, Pac E, Menaszek E (2018) Multifunctional polymer coatings for titanium implants. Mater Sci Eng C 93:950–957

    Article  CAS  Google Scholar 

  9. Chouirfa H, Bouloussa H, Migonney V, Falentin-Daudre C (2019) Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomater 83:37–54

    Article  CAS  Google Scholar 

  10. Ferraris S, Spriano S (2016) Antibacterial titanium surfaces for medical implants. Mater Sci Eng, C 61:965–978

    Article  CAS  Google Scholar 

  11. Shabgard M, Khosrozadeh B (2017) Investigation of carbon nanotube added dielectric on the surface characteristics and machining performance of Ti-6Al-4V alloy in EDM process. J Manuf Processes 25:212–219

    Article  Google Scholar 

  12. Bains PS, Mahajan R, Sidhu SS, Kaur S (2019) Experimental investigation of abrasive assisted hybrid EDM of Ti-6Al-4V. J Micromanuf. https://doi.org/10.1177/2516598419833498

  13. Saito N, Usui Y, Aoki K, Narita N, Shimizu M, Ogiwara N, Nakamura K, Ishigaki N, Kato H, Taruta S, Endo M (2008) Carbon nanotubes for biomaterials in contact with bone. Curr Med Chem 15(5):523–527

    Article  CAS  Google Scholar 

  14. Raphey VR, Henna TK, Nivitha KP, Mufeedha P, Sabu C, Pramod K (2019) Advanced biomedical applications of carbon nanotube. Mater Sci Eng, C 100:616–630

    Article  CAS  Google Scholar 

  15. Li XQ, Hou PX, Liu C, Cheng HM (2019) Preparation of metallic single-wall carbon nanotubes. Carbon 147:187–198

    Article  CAS  Google Scholar 

  16. Mikael PE, Amini AR, Basu J, Arellano-Jimenez MJ, Laurencin CT, Sanders MM, Carter CB, Nukavarapu SP (2014) Functionalized carbon nanotube reinforced scaffolds for bone regenerative engineering: fabrication, in-vitro and in-vivo evaluation. Biomed Mater 9(3):1–13

    Article  Google Scholar 

  17. Rivas GA, Rodriguez MC, Rubianes MD, Gutierrez FA (2017) Carbon nanotubes-based electrochemical (bio)sensors for biomarkers. Appl Mater Today 9:566–588

    Article  Google Scholar 

  18. Voge CM, Stegemann JP (2011) Carbon nanotubes in neural interfacing applications. J Neutral Eng 8(1):011001

    Article  Google Scholar 

  19. Kumar R, Roy S, Gunjan P, Sahoo A, Das RK (2018) Analysis of MRR and surface roughness in machining Ti-6Al-4V ELI titanium alloy using EDM process. Proc Manuf 20:358–364

    Google Scholar 

  20. Das MK, Kumar K, Barman TK, Sahoo P (2014) Application of artificial bee colony algorithm for optimization of MRR and surface roughness in EDM of EN31 tool steel. Proc Mater Sci 6:741–751

    Article  CAS  Google Scholar 

  21. Laura PZ, Bin Z, Hui H, Robert CH (2006) Bone cell proliferation on carbon nanotubes. Nano Lett 6(3):562–567

    Article  Google Scholar 

  22. Harrison BS, Atala A (2007) Carbon nanotube applications for tissue engineering: review. Biomaterials 28:344–353

    Article  CAS  Google Scholar 

  23. Hirata E, Uo M, Takita H, Akasaka T, Watari F, Yokoyama A (2011) Multiwalled carbon nanotubes coating of 3D collagen scaffolds for bone tissue engineering. Carbon 49(10):3284–3291

    Article  CAS  Google Scholar 

  24. Terada M, Abe S, Akasaka T, Uo M, Kitagawa Y, Watari F (2009) Multiwalled carbon nanotube coating on titanium. Biomed Mater Eng 19:45–52

    Google Scholar 

  25. Aleksandra WB, Ewa SZ, Wojciech P, Elzbieta D, Aleksandra B, Marta B (2016) A model of adsorption of albumin on the implant surface titanium and titanium modified carbon coatings (MWCNT-EPD) 2D correlation analysis. J Mol Struct 1–10

    Google Scholar 

  26. Tahsin TO, Hamidullah Y, Nihal E, Bülent E (2018) Particle migration and surface modification on Ti6Al4V in SiC powder mixed electrical discharge machining. J Manuf Processes 31:744–758

    Article  Google Scholar 

  27. Bains PS, Sidhu SS, Payal HS (2019) Magnetic field influence on surface modifications in powder mixed EDM. Silicon 11(1):415–423

    Article  CAS  Google Scholar 

  28. Mahajan A, Sidhu SS (2017) Surface modification of metallic biomaterials for enhanced functionality: a review. Mater Technol 33(2):93–105

    Article  Google Scholar 

  29. Lee WF, Yang TS, Wu YC, Peng PW (2013) Nanoporous biocompatible layer on Ti-6Al-4V alloys enhanced osteoblast-like cell response. J Exp Clin Med 5(3):92–96

    Article  CAS  Google Scholar 

  30. Prakash C, Kansal HK, Pabla BS, Puri S, Aggarwal A (2015) Electric discharge machining—a potential choice for surface modification of metallic implants for orthopedic applications: a review. J Eng Manuf 1–23

    Google Scholar 

  31. Bhui AS, Singh G, Sidhu SS, Bains PS (2018) Experimental investigation of optimal ED machining parameters for Ti-6Al-4V biomaterial. FU Ser Mech Eng 16(3):337–345

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preetkanwal Singh Bains .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bains, P.S., Singh, G., Bhui, A.S., Sidhu, S.S. (2019). Parametric Evaluation of Medical Grade Titanium Alloy in MWCNTs Mixed Dielectric Using Graphite Electrode. In: Bains, P., Sidhu, S., Bahraminasab, M., Prakash, C. (eds) Biomaterials in Orthopaedics and Bone Regeneration . Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-13-9977-0_1

Download citation

Publish with us

Policies and ethics