Skip to main content

A Minimal System

  • Chapter
  • First Online:
Incompleteness for Higher-Order Arithmetic

Part of the book series: SpringerBriefs in Mathematics ((BRIEFSMATH))

  • 350 Accesses

Abstract

In this chapter, we prove the following results.

  1. (1)

    \(\mathsf{Z_2} +\mathsf{HP}\) is equiconsistent with \(\mathsf{ZFC}\) .

  2. (2)

    \(\mathsf{Z_3} +\mathsf{HP}\) is equiconsistent with \(\mathsf{ZFC} + \) “there exists a remarkable cardinal”.

  3. (3)

    \(\mathsf{Z_4} +\mathsf{HP}\) implies that \(0^{\sharp }\) exists.

As a corollary, “\(\mathsf{HP}\) implies that \(0^{\sharp }\) exists” is neither provable in \(\mathsf{Z_2}\) nor in \(\mathsf{Z_3}\), i.e. \(\mathsf{Z_4}\) is the minimal system of higher-order arithmetic for proving that “\(\mathsf{HP}\) implies that \(0^{\sharp }\) exists”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The property \(\varSigma = 0^{\sharp }\) is \(\varPi _1\) over \((\mathsf{HC}, \in )\), and therefore a \(\varPi ^1_2\) statement.

  2. 2.

    Especially, if \(M=V\), Definition 2.8 gives us the definition of a normal measure on cardinals.

  3. 3.

    Examples of notions of large cardinals compatible with L are: inaccessible cardinal, reflecting cardinal, Mahlo cardinal, weakly compact, indescribable cardinal, unfoldable cardinal, subtle cardinal, ineffable cardinal, 1-iterable cardinal, remarkable cardinal, 2-iterable cardinal and \(\omega \)-Erd\(\ddot{o}\)s cardinal. For definitions of these large cardinal notions, I refer to Sect. 2.1.3 and Appendix C.

  4. 4.

    Recall that \(\mathbb {P}\) is \(\omega \)-distributive if every function \(f: \alpha \rightarrow V\) in the generic extension with \(\alpha <\omega _1\) is in the ground model.

  5. 5.

    I would like to thank W.Hugh Woodin and Sy Friedman for pointing out this fact to me. The proof of this fact is essentially similar as the proof of Theorem 1.25.

  6. 6.

    For the definition of K, I refer to [22].

  7. 7.

    The Axiom of Determinacy \((\mathsf{AD})\) states that for every \(A \subseteq \mathbb {R}\), the game \(G_{A}\) is determined.

  8. 8.

    The answer to this question is negative if \(V=\mathsf{HOD}\). For a very easy proof of the Kunen inconsistency in the case \(V=\mathsf{HOD}\), I refer to [23, Theorem 21].

  9. 9.

    \(\mathsf{AC}\) denotes the Axiom of Choice.

References

  1. Jech, T.J.: Set Theory. Third Millennium Edition, revised and expanded. Springer, Berlin (2003)

    Google Scholar 

  2. Kunen, K.: Set Theory: An Introduction to Independence Proofs. North Holland (1980)

    Google Scholar 

  3. Jensen, R.B., Solovay, R.M.: Some applications of almost disjoint sets. Mathematical logic and foundations of set theory. In: Proceedings of an International Colloquium Held Under the Auspices of The Israel Academy of Sciences and Humanities, vol. 59, pp. 84–104 (1970)

    Chapter  Google Scholar 

  4. Devlin, K.J.: Constructibility. Springer, Berlin (1984)

    Google Scholar 

  5. Kanamori, A.: Higher Infinite: Large Cardinals in Set Theory from Their Beginnings. Springer Monographs in Mathematics, Springer, Berlin, Second edition (2003)

    Google Scholar 

  6. Dubose, D.A.: The equivalence of determinacy and iterated sharps. J. Symb. Log. 55(2), 502–525 (1990)

    Article  MathSciNet  Google Scholar 

  7. Schindler, R.: Proper forcing and remarkable cardinals. Bull. Symbolic Logic 6(2), 176–184 (2000)

    Article  MathSciNet  Google Scholar 

  8. Schindler, R.: Remarkable cardinals. Infinity, Computability, and Metamathematics (Geschke et al., eds.), Festschrift celebrating the 60th birthdays of Peter Koepke and Philip Welch, pp. 299–308

    Google Scholar 

  9. Magidor, M.: On the role of supercompact and extendible cardinals in logic. Israel J. Math. 10, 147–157 (1971)

    Article  MathSciNet  Google Scholar 

  10. Schindler, R.: Proper forcing and remarkable cardinals II.: Schindler, Ralf. J. Symb. Log. 66, 1481–1492 (2001)

    Article  MathSciNet  Google Scholar 

  11. Gitman, V., Welch, P.: Ramsey-like cardinals II. J. Symb. Log. 76(2), 541–560 (2011)

    Article  MathSciNet  Google Scholar 

  12. Friedman, S.D.: Constructibility and Class Forcing. Chapter 8 in Handbook of Set Theory, Edited by Matthew Foreman and Akihiro Kanamori. Springer, Berlin (2010)

    Google Scholar 

  13. Cheng, Y.: Analysis of Martin-Harrington theorem in higher-order arithmetic. Ph.D. thesis, National University of Singapore (2012)

    Google Scholar 

  14. Cheng, Y., Schindler, R.: Harrington’s Principle in higher-order arithmetic. J. Symb. Log. 80(02), 477–489 (2015)

    Article  MathSciNet  Google Scholar 

  15. Beller, A., Jensen, R.B., Welch, P.: Coding the Universe. Cambridge University Press, Cambridge (1982)

    Book  Google Scholar 

  16. Shelah, S., Stanley, L.: Coding and reshaping when there are no sharps. Set Theory of the Continuum (Judah, H. et al., Eds.), pp. 407–416. Springer, New York (1992)

    Google Scholar 

  17. Schindler, R.: Coding into K by reasonable forcing. Trans. Amer. Math. Soc. 353, 479–489 (2000)

    Google Scholar 

  18. Schindler, R.: Set Theory: Exploring Independence and Truth. Springer (2014)

    Google Scholar 

  19. Harrington, L.A.: Analytic determinacy and \(0^{\sharp }\). J. Symb. Log. 43, 685–693 (1978)

    Article  MathSciNet  Google Scholar 

  20. Mitchell, W.J.: Beginning inner model theory. In: Foreman, M., Kanamori, A. (Eds.) Chapter 17 in Handbook of Set Theory. Springer, Berlin (2010)

    Google Scholar 

  21. Mitchell, W.J.: The covering lemma. In: Foreman, M., Kanamori, A. (Eds.) Chapter 18 in Handbook of Set Theory. Springer, Berlin (2010)

    Google Scholar 

  22. Steel, R.J.: An outline of inner model theory. In: Foreman, M., Kanamori, A. (Eds.) Chapter 19 in Handbook of Set Theory. Springer, Berlin (2010)

    Google Scholar 

  23. Hamkins, J.D., Kirmayer, G., Perlmutter, N.L.: Generalizations of the Kunen inconsistency. Ann. Pure Appl. Logic. 163(12), 1872–1890 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Cheng .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cheng, Y. (2019). A Minimal System. In: Incompleteness for Higher-Order Arithmetic. SpringerBriefs in Mathematics. Springer, Singapore. https://doi.org/10.1007/978-981-13-9949-7_2

Download citation

Publish with us

Policies and ethics