Skip to main content

Artificially Synthesized Species and Genera

  • Chapter
  • First Online:
Biosystematics of Triticeae

Abstract

The artificial colchicine treatment or spontaneous chromosome doubling of interspecific/intergeneric hybrids can generate amphiploids that can set seeds. Using this strategy, many newly synthetic species or genus was produced. Some species, such as rye (Secale), Haynaldia, and Lophopyrum, are very easy to cross with wheat to produce hybrids even without special treatments such as embryo rescues. Generally, seedlings of intergeneric hybridization in Triticeae can be obtained by rescues of immature embryos at 14 days (sometimes 7 days) after cross-pollination. More distant hybridization such as wheat-maize can be also possible (Laurie and Bennett, 1986, 1987). Some successful examples of interspecific and intergeneric hybridization are shown in Table 11.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Armstrong, J. M., & Mclenna, H. A. (1944). Amphidiploidy in Triticum-Agropyron hybrids. Science in Agriculture, 24.

    Google Scholar 

  • Bates, L. S., Mujeeb, A. K., & Waters, R. F. (1976). Wheat × barley hybrids—Problems and potentials. Cereal Res. Comm., 4, 377–386.

    Google Scholar 

  • Britten, E. J., & Thompson, W. P. (1941). The artificial synthesis of a 42-chromosome wheat. Science, 93, 479.

    Article  CAS  Google Scholar 

  • Cauderon, Y. (1966). Cytogenetic study of material resulting from across between Triticum aestivum and agropyron intermedium. i. Creation of stable addition lines. Ann. Amelioration Des Plant, 16, 43–70.

    Google Scholar 

  • Cauderon, Y., Temple, J., & Gay, G. (1978). Production and cytogenetic study of a new Hordeum vulgare ssp. distichon × Triticum timopheevi sexual hybrid. C.R. Hebd Seanees Acad. Sci. Ser. D. Sci. Nat., 286, 1687–1690.

    Google Scholar 

  • Сорокина O H. 1937. Плодовитый константный 42-xpo-мосомный гибрид Aegilops ventricosa Tausch. × T. durum Desf. Тр. Прикд. Бот. Ген. и Сел., cер. 2, 7: 5–12

    Google Scholar 

  • Dewey, W. G. (1981). Wheat × Agropyron podperae. Wheat Newsletter, 27, 148.

    Google Scholar 

  • Finch, R. A., & Bennett, D. B. (1980). Mitotic and meiotic chromosome behavior in new hybrids of Hordeum with Triticum and Secale. Heredity, 44, 201–210.

    Google Scholar 

  • Kaschiri, M. (1975). Significance of wheat-Aegilops crosses for the improvement of cultivated wheat. Wheat Information Service, 40, 22–24.

    Google Scholar 

  • Kihara, H., & Katayama, Y. (1931). Genomanalyse bei Triticum und Aegilops. III. Zur Entstehungsweise eines neuen kotoploidenegiotricum. Cytologia, 2, 234–255.

    Article  Google Scholar 

  • Kihara, H., Hosono, S., Nishiyama, I., et al. (1954). A study of wheat. Tokyo: Yokendo.

    Google Scholar 

  • Kimber, G., & Abubaker, M. (1979). Wheat hybrid information systems. Cereal Res. Comm., 7, 257–259.

    Google Scholar 

  • Knobloch, I. W. (1968). A check list of crosses in Gramineae (pp. 1–170). University of Michigan.

    Google Scholar 

  • Kruse, A. (1973). Hordeum × Triticum hybrids. Hereditas, 73, 157–161.

    Article  Google Scholar 

  • Laurie, D. A., & Bennett, M. D. (1986). Wheat × maize hybridazation. Canadian Journal of Genetics and Cytology, 28, 313–316.

    Article  Google Scholar 

  • Laurie, D. A., & Bennett, M. D. (1987). The effect of the crossability loci Kr1 and Kr2 on fertilization frequency in hexaploid wheat × maize crosses. Theoretical and Applied Genetics, 73, 403–409.

    Article  CAS  Google Scholar 

  • Li, H. W., & Tu, D. S. (1947). Studies on thechromosomal aberations of the amphidiploid, Triticum timopheevi and Aegilops bicornis. Botanical Bulletin of Academia Sinica, 1, 183–186.

    Google Scholar 

  • Martin, A., & Chapman, V. (1977). A hybrid between Hordeum chilense and Triticum aestivum. Cereal Res. Comm., 5, 365–368.

    Google Scholar 

  • Martin, A., & Laguna, E. S. (1980). A hybrid between Hordeum chilense and Triticum turgidum. Cereal Res. Comm., 8, 349–354.

    Google Scholar 

  • McFadden, E. S., & Sears, E. R. (1944). The artificial synthesis of Triticum spelta. Records of the Genetics Society of America, 13, 26–27.

    Google Scholar 

  • McFadden, E. S., & Sears, E. R. (1946). The origin of Triticum spelta and its free-threshing hexaploid relatives. The Journal of Heredity, 37(81–90), 107–116.

    Article  Google Scholar 

  • McFadden, E. S., & Sears, E. R. (1947). The genome approach in radical wheat breeding. American Society of Agricultural, 39, 1011–1026.

    Google Scholar 

  • Mujeeb, K. A., & Rodriguez, R. (1980). Some intergeneric hybrids in the Triticeae. Cereal Res. Comm., 8, 469–475.

    Google Scholar 

  • Oehler, E. (1934a). Die Ausnutzung von Art-und Gettungsbastarden in weizenzuchtung. Zücher, 6, 205–211.

    Article  Google Scholar 

  • Oehler, E. (1934b). Untersuchungen an drei neuen konstanten addtiven Aegilopsweizenbasrden. Züchter, 6, 263–270.

    Article  Google Scholar 

  • Oehler, E. (1936). Untersuchungen an einem neuen konstant-intermediaren additi-ven Aegilops- weizenbastard (Aegilo-triticum triuncialis-durum ). Der Zücher, 8, 29–33.

    Article  Google Scholar 

  • Sando, W. J. (1935). Hybrids of wheat, rye, Aegilops and Haynaldia. Journal of Heredity, 26, 229–232.

    Article  Google Scholar 

  • Sears, E. R. (1941a). Amphiploids in the seven-chromosome Triticinae. Bulletin of the Agricultural Experiment Station Research of Missouri, 336, 46.

    Google Scholar 

  • Sears, E. R. (1941b). Chromosome pairing and fertility in hybrids and amphidiploids in the Triticinae. Bulletin of the Agricultural Experiment Station Research of Missouri, 337, 1–20.

    Google Scholar 

  • Sears, E. R. (1944). The amphiploids Aegilops cylindrica × Triticum durum and Ae. ventricosa × T. durum and their hybrids with T. aestivum. Journal of Agricultural Research, 68, 134–144.

    Google Scholar 

  • Tschermak, E. (1930). Neue Beobachtungen am fertilen Artbastard Triticum turgidovillosum. Berichte der Deutschen Botanischen Gesellschaft, 48, 400–407.

    Google Scholar 

  • Жебрак, А. Р. (1939). Получение амфидиплоидов T. durum × T. timopheevi ДАН СССР, т. 25, B. I, 57–60.

    Google Scholar 

  • Жебрак, А. P. (1940a). Оплодовитости амфидиплоида твердой и однозернянки. ДАН СССР, т. 29, B. 7, C. 480–482.

    Google Scholar 

  • Жебрак, А. Р. (1940b). Полунение а фидиплоида T. timopheevi × T. durum var. hordeiform 010 Действием колхицина. ДАН СССР, т. 29B8/9, C. 603–606.

    Google Scholar 

  • Жебрак, А. P. (1941a). Осравнитедьной плодовитости амфигаплодов и амфидиплодов T. timopheevi × T. durum var. hordeiform 010. ДАН СССР, T. 30, B. I, C. 54–56.

    Google Scholar 

  • Жебрак, А. Р. (1941b). Получение амфидиплодов T. persicum × T. timopheevi. ДАН СССР, T. 31, B. 5, C. 485–487.

    Google Scholar 

  • Жебрак, А. Р. (1941c). Получение амфидиплоидов T. turgidum × T. timopheevi действием колхицина. ДАН СССР, T. 31, B. B. 6, C. (pp. 619–621).

    Google Scholar 

  • Жебрак, А. Р. (1944a). Получение амфидиплоидов T. orientale × T. timopheevi. Деиствием колхицина. ДНА СССР, T. 42, B. 8, C. (pp. 366–368).

    Google Scholar 

  • Жебрак, А. Р. (1944b). Получение афидиплов T. polonicum × T. timopheevi. ДАН СССР, T. 43, B. 3, C. 124–125.

    Google Scholar 

  • Левитский, Р. А., и Бенецкая, Р. К. (1931). Цитология пщенечноржаных амфидиплоидов. Тр. Прикл. Бот. Ген. иСел., 27.

    Google Scholar 

  • Хижняк, В. А. (1937). Пщенично-пырейные амфидоплиды. ДАН СССР, т. 17, B. 9, C. 481–482.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 China Agriculture Press & Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yen, C., Yang, J., Yuan, Z., Ning, S., Liu, D. (2020). Artificially Synthesized Species and Genera. In: Biosystematics of Triticeae. Springer, Singapore. https://doi.org/10.1007/978-981-13-9931-2_11

Download citation

Publish with us

Policies and ethics