Skip to main content

Nanoparticles; Their Use as Antibacterial and DNA Cleaving Agents

  • Chapter
  • First Online:
Nanomaterials for Healthcare, Energy and Environment

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 118))

Abstract

Nanoparticles have revolutionized the field of nanotechnology, owing to their specialized characteristics. The immense use of nanoparticles in various fields has led to the great demand in terms of production as well as the fabrications methods. Apart from conventional methods, the use of environmental friendly methods had gained much impetus, particularly, using biological material, including plant extracts. The obtained metals based nanoparticles are applied in innumerable areas including drug discovery, antibacterial and DNA cleaving agents, while as DNA cleaving ability of nanoparticles is to be explored extensively. The various nanoparticles generated have been characterized by different spectroscopic, optical and thermal techniques to establish their precise structure and size. Thus, this chapter reports the importance of nanotechnology in the form of nanoparticles based on their various modes of synthesis, their biological significance in terms of targeting microbes and DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abboud Y, Saffaj T, Chagraoui A et al (2014) Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (Conps) produced using brown alga extract (Bifurcaria bifurcata). Appl Nanosci 4(5):571–576

    Article  CAS  Google Scholar 

  • Agarwal H, Venkat Kumar S, Rajeshkumar S (2017) A review on green synthesis of zinc oxide nanoparticles—an eco-friendly approach. Resour Effic Technol 3:406–413

    Article  Google Scholar 

  • Ahamed M, Alhadlaq HA, Khan MAM et al (2014) Synthesis, characterization, and antimicrobial activity of copper oxide nanoparticles. J Nanomater. https://doi.org/10.1155/2014/637858

    Article  Google Scholar 

  • Al-Othman MR, El-Aziz ARMABD, Mahmoud MA et al (2014) Application of silver nanoparticles as antifungal and antialatoxin B1 produced by Aspergillus flavus. Dig J Nanomater Bios 9(1):151–157

    Google Scholar 

  • Anandgaonker P, Kulkarni G, Gaikwad S et al (2015) Synthesis of TiO2 nanoparticles by electrochemical method and their antibacterial application. Arab J Chem. https://doi.org/10.1016/j.arabjc.2014.12.015

  • Arshad M, Khan A, Farooqi ZH et al (2018) Green synthesis, characterization and biological activities of silver nanoparticles using the bark extract of Ailanthus altissima. Mater Sci-Poland 36(1):21–26

    Article  CAS  Google Scholar 

  • Azam A, Ahmed AS, Oves M et al (2012) Antimicrobia activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. Int J Nanomed 7:6003–6009

    Article  CAS  Google Scholar 

  • Babu MSS, Patrudu TB, Reddy KH (2011) DNA binding and cleavage activity of binuclear metal complexes with benzil-α-monoxime thiosemicarbzone. Eur J Chem 8(S1):S309–S317

    Google Scholar 

  • Bansal P, Jaggi N, Rohilla SK (2012) “Green” synthesis of Cds nanoparticles and effect of capping agent concentration on crystallite size. Res J Chem Sci 2(8):69–71

    CAS  Google Scholar 

  • Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):17–71

    Article  Google Scholar 

  • Chandrasekar N, Kumar KMM, Balasubramnian KS et al (2013) Facile synthesis of iron oxide, iron-cobalt and zero valent iron nanoparticles and evaluation of their anti microbial activity, free radicle scavenginging activity and antioxidant assay. Dig J Nanomater Bios 8(2):765–775

    Google Scholar 

  • Chityala VK, Kumar KS, Macha R et al (2014) DNA cleavage, cytotoxic activities, and antimicrobial studies of ternary copper (ii) complexes of isoxazole schiff base and heterocyclic compounds. Bioinorg Chem Appl. https://doi.org/10.1155/2014/691260

    Article  Google Scholar 

  • Chokkareddy R, Redhi G (2018) Green synthesis of metal nanoparticles and its reaction mechanisms: synthesis, characterization and their applications. In: Green metal nanoparticles. https://doi.org/10.1002/9781119418900.ch4

    Chapter  Google Scholar 

  • Das RK, Gogoi N, Bora U (2011) Green synthesis of gold nanoparticles using Nyctanthes arbortristis flower extract. Bioprocess Biosyst Eng 34(5):615–619

    Article  CAS  Google Scholar 

  • Das J, Paul DM, Velusamy P (2013) Sesbania grandiflora leaf extract mediated green synthesis of antibacterial silver nanoparticles against selected human pathogens. Spectrochim Acta A 104:265–270

    Article  CAS  Google Scholar 

  • Dastager SG (2010) Antimicrobial activity of silver nanoparticles. Dig J Nanomater Bios 5(2):447–451

    Google Scholar 

  • Dizaj SM, Mennati A, Jafari S et al (2015) Antimicrobial activity of carbon-based nanoparticles. Adv Pharm Bull 5(1):19–23

    CAS  Google Scholar 

  • Doria G, Conde J, Veigas B et al (2012) Noble metal nanoparticles for biosensing applications. Sensors 12(2):1657–1687

    Article  CAS  Google Scholar 

  • Dubey M, Bhadauria S, Kushwah BS (2009) Green synthesis of nanosilver particles from extract of Eucalyptus hybrida (Safeda) leaf. Dig J Nanomater Bios 4(3):537–543

    Google Scholar 

  • Duman F, Ocsoy I, Kup FO et al (2016) Chamomile flower extract-directed CuO nanoparticle formation for its antioxidant and DNA cleavage properties. Mater Sci Eng, C 60:333–338

    Article  CAS  Google Scholar 

  • El-Aziz ARA (2014) Eco-friendly biosynthesis of silver nanoparticles by Aspergillus parasiticus. Dig J Nanomater Bios 9(4):1485–1492

    Google Scholar 

  • El-Shanshoury AER, Sobhy EE, Mohamed EE (2012) Rapid biosynthesis of cadmium sulfide (CdS) nanoparticles using culture supernatants of Escherichia coli ATCC 8739, Bacillus subtilis ATCC 6633 and Lactobacillus acidophilus DSMZ 20079T. Afr J Biotechnol 11(31):7957–7965

    CAS  Google Scholar 

  • Fernández-García M, Rodriguez JA (2007) Metal oxide nanoparticles. Nanomaterials: inorganic and bioinorganic perspectives. Brookhaven National Laboratory, Upton

    Google Scholar 

  • Firdhouse MJ, Lalitha P, Sripathi SK (2014) An undemanding method of synthesis of gold nanoparticles using Pisonia grandis (R. Br.). Dig J Nanomater Bios 9(1):385–393

    Google Scholar 

  • Gan PP, Ng SH, Huang Y et al (2012) Green synthesis of gold nanoparticles using palm oil mill effluent (POME): a low-cost and eco-friendly viable approach. Bioresour Technol 113:132–135

    Article  CAS  Google Scholar 

  • Gannimani R, Perumal A, Krishna SB et al (2014) Synthesis and antibacterial activity of silver and gold nanoparticles produced using aqueous seed extract of Protorhus longifolia as a reducing agent. Dig J Nanomater Bios 9(4):1669–1679

    Google Scholar 

  • Gnanajobitha G, Paulkumar K, Vanaja M et al (2013) Fruit-mediated synthesis of silver nanoparticles using Vitis vinifera and evaluation of their antimicrobial efficacy. J Nanostruct Chem 3(1):1–6

    Article  Google Scholar 

  • Gornicka E, Mikiciuk J, Wronska A et al (2014) The influence of silver nanoparticles on fecal bacteria susceptibility. Dig J Nanomater Bios 9(1):347–354

    Google Scholar 

  • Govindaraju K, Tamilselvan S, Kiruthiga V et al (2010) biogenic silver nanoparticles by Solanum torvum and their promising antimicrobial activity. J Biopestic 3(1):394–399

    CAS  Google Scholar 

  • Gurjas K, Tanvir S, Amit (2012) Nanotechnology: a review. Int J Edu App Res 2(1)

    Google Scholar 

  • Guzman MG, Dille J, Godet S (2009) Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. Int J Biomol Eng 2(3):04–111

    Google Scholar 

  • Hajipour MJ, Fromm KM, Ashkarran AA et al (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30(10):499–511

    Article  CAS  Google Scholar 

  • Ibrahim ME, Ehab S (2018) Green synthesis of metallic nanoparticles using biopolymers and plant extracts. In: Green metal nanoparticles. Scrivener Publishing LLC, pp 293–319

    Google Scholar 

  • Ingole AR, Thakare SR, Khati NT et al (2010) Green synthesis of selenium nanoparticles under ambient condition. Chalcogenide Lett 7(7):485–489

    CAS  Google Scholar 

  • Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650

    Article  CAS  Google Scholar 

  • Iravani S, Korbekandi H, Mirmohammadi SV et al (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9(6):385–406

    CAS  Google Scholar 

  • Jena J, Pradhan N, Dash BP et al (2015) Pigment mediated biogenic synthesis of silver nanoparticles using diatom Amphora Sp. and its antimicrobial activity. J Saudi Chem Soc 19(6):661–666

    Article  Google Scholar 

  • Jeng HA, Swanson J (2006) Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health A 41(12):2699–2711

    Article  CAS  Google Scholar 

  • Joerger R, Klaus T, Granqvist CG (2000) Biologically produced silver–carbon composite materials for optically functional thin-film coatings. Adv Mater. https://doi.org/10.1002/(sici)1521-4095(200003)12:6%3c407::aid-adma407%3e3.0.co;2-o

    Article  CAS  Google Scholar 

  • Kanchana A, Agarwal I, Sunkar S et al  (2011) Biogenic silver nanoparticles from Spinacia oleracea and Lactuca sativa and their potential antimicrobial activity. Dig J Nanomater Bios 6(4):1741–1750

    Google Scholar 

  • Kathad U, Gajera HP (2014) Synthesis of copper nanoparticles by two different methods and size comparision. Int J Pharma Bio Sci 5(3):533–540

    Google Scholar 

  • Krishna VD, Wu K, Su D, Cheeran MCJ, Wang J-P, Perez A et al (2018) Nanotechnology: review of concepts and potential application of sensing platforms in food safety. Food Microbiol 75:47–54

    Article  CAS  Google Scholar 

  • Kuswandi B, Futra D, Heng LY (2017) Nanosensors for the detection of food contaminants A2-Oprea, Alexandra Elena. In: Grumezescu AM (ed) Nanotechnology applications in food. Academic Press, pp 307–333

    Google Scholar 

  • Logeswari P, Silambarasan S, Abraham J (2015) Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property. J Saudi Chem Soc 19(3):311–317

    Article  Google Scholar 

  • Mahmoud M, Al-Sohaibani SA, Al-Othman MR et al (2013) Synthesis of extracellular silver nanoparticles using Fusarium semitectum (KSU-4) isolated from Saudi Arabia. Dig J Nanomater Bios 8(2):589–596

    Google Scholar 

  • Manickathai K, Viswanathan SK, Alagar M (2008) Synthesis and characterization of Cdo and Cds nanoparticles. Indian J Pure Appl Phys 46(8):561–564

    CAS  Google Scholar 

  • Mariam AA, Kashif M, Arokiyaraj S et al (2014) Bio-synthesis of NiO and Ni nanoparticles and their characterization. Dig J Nanomater Bios 9(3):1007–1019

    Google Scholar 

  • Mohammad MK, Mehrnaz K, Amir R (2018) A comparative study of stability, antioxidant, DNA cleavage and antibacterial activities of green and chemically synthesized silver nanoparticles. Artif Cells Nanomed Biotechnol 46(S3):S1022–S1031

    Google Scholar 

  • Naghdi M, Taheran M, Sarma SJ et al (2016) Nanotechnology to remove contaminants. In: Eric (eds) Nanoscience in food and agriculture 1. Springer International Publishing, Cham, pp 101–128

    Chapter  Google Scholar 

  • Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci 156(1–2):1–13

    Article  CAS  Google Scholar 

  • Niranjan T, Rajasekar C, Gan G. Redhi (2018) Green synthesis of platinum nanoparticles and their biomedical applications. In: Green metal nanoparticles. Scrivener Publishing LLC, pp 603–627

    Google Scholar 

  • Oliveira MM, Ugarte D, Zanchet D et al (2005) Influence of synthetic parameters on the size, structure, and stability of dodecanethiol-stabilized silver nanoparticles. J Colloid Interface Sci 292:429–435

    Article  CAS  Google Scholar 

  • Pal SL, Jana U, Manna PK et al (2011) Nanoparticle: an overview of preparation and characterization. J Appl Pharm Sci 01:228–234

    Google Scholar 

  • Palanisamy KL, Sundaram NM, Devabharathi V et al (2013) Synthesis and characterization of olive oil mediated iron oxide nanoparticles. Dig J Nanomater Bios 8(2):607–612

    Google Scholar 

  • Panigrahi S, Kundu S, Ghosh SK et al (2004) General method of synthesis for metal nanoparticles. J Nanopart Res 6:411–414

    Article  CAS  Google Scholar 

  • Paramita K, Rashmi (2018) Green tiny magnets: an economic and eco-friendly remedy for environmental damage. In: Green metal nanoparticles. Scrivener Publishing LLC, pp 245–292

    Google Scholar 

  • Pattanayak M, Nayak PL (2013) Ecofriendly green synthesis of iron nanoparticles from various plants and spices extract. Int J Plant Anim Environ Sci 3(1):68–78

    CAS  Google Scholar 

  • Pileni MP (1997) Nanosized particles made in colloidal assemblies. Langmuir 13(13):3266–3276

    Article  CAS  Google Scholar 

  • Ponarulselvam S, Paneerselvam C, Murugan A (2012) Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian Pac J Trop Biomed 2(7):574–580

    Article  CAS  Google Scholar 

  • Pramila K, Ravi KY, Deepak KS et al (2018) Biogenesis of metal nanoparticles and their pharmacological applications: present status and application prospects. J Nanostruct Chem 8(3):217–254

    Article  Google Scholar 

  • Puja K, Cynthia O, Boon HB et al (2015) Nanotoxicity: an interplay of oxidative stress, inflammation and cell death. Nanomaterials 5(3):1163–1180

    Article  Google Scholar 

  • Pulit J, Banach M (2013) Environment-friendly method for obtaining gold nanoparticles based on plant extract. Dig J Nanomater Bios 8(3):1295–1300

    Google Scholar 

  • Puzyn Tomasz, Bakhtiyor R et al (2011) Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nat Nanotechnol 6(3):175–178

    Article  CAS  Google Scholar 

  • Rodríguez-Fragoso P, Reyes-Esparza J, León-Buitimea A et al (2012) Synthesis, characterization and toxicological evaluation of maltodextrin capped cadmium sulfide nanoparticles in human cell lines and chicken embryos. J Nanobiotechnol. https://doi.org/10.1186/1477-3155-10-47

    Article  Google Scholar 

  • Saif S, Tahir A, Chen Y (2016) Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials 5(209):1–26

    Google Scholar 

  • Salari Z, Danafar F, Dabaghi S et al (2016) Sustainable synthesis of silver nanoparticles using macroalgae Spirogyra varians and analysis of their antibacterial activity. J Saudi Chem Soc 20(4):459–464

    Article  CAS  Google Scholar 

  • Sasidharan S, Balakrishnaraja R (2014) Comparison studies on the synthesis of selenium nanoparticles by various micro-organisms. Int J Pure App Biosci 2(1):112–117

    Google Scholar 

  • Satheeskumar S, Ramesh K, Srinivasan N (2014) Exploration Of synthesis, structural, morphology and antibacterial activity of Zn1-x-y, Mgx, AlyO nano particles. Dig J Nanomater Bios 9(4):1323–1330

    Google Scholar 

  • Savithramma N, Rao ML, Rukmini K (2011) Antimicrobial activity of silver nanoparticles synthesized by using medicinal plants. Int J Chem Tech Res 3(3):1394–1402

    CAS  Google Scholar 

  • Senthil M, Ramesh C (2012) Biogenic synthesis of Fe3O4 nanoparticles using Tridax procumbens leaf extract and its antibacterial activity on Pseudomonas aeruginosa. Dig J Nanomater Bios 7(3):1655–1660

    Google Scholar 

  • Shaik S, Mkize L, Khumalo M et al (2014) Tetradenia riparia-mediated synthesis of nano-gold particles. Dig J Nanomater Bios 9(2):567–573

    Google Scholar 

  • Shamaila S, Sajjad AKL, Najam-Ul-Athar R et al (2018) Green synthesis of metal-based nanoparticles and their applications. In: Green metal nanoparticles. Scrivener Publishing LLC, pp 23–77

    Google Scholar 

  • Shameli K, Ahmad MB, Jazayeri SD (2012) Investigation of antibacterial properties silver nanoparticles prepared via green method. Chem Cent J 6(1):1–10

    Article  Google Scholar 

  • Shanmugaiah V, Harikrishnan H, Al-Harbi NS et al (2015) Facile synthesis of silver nanoparticles using Streptomyces Sp. VSMGT1014 and their antimicrobial efficiency. Dig J Nanomater Bios 10(1):179–187

    Google Scholar 

  • Sharma G, Sharma AR, Kurian M et al (2014) Green synthesis of silver nanoparticle using Myristica fragrans (NUTMEG) seed extract and its biological activity. Dig J Nanomater Bios 9(1):325–332

    Google Scholar 

  • Stoimenov PK, Klinger RL, Marchin GL et al (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18(17):6679–6686

    Article  CAS  Google Scholar 

  • Sulaiman GM, Mohammad AAW, Abdul-Wahed HE et al (2013) Biosynthesis, antimicrobial and cytotoxic effects of silver nanoaparticles using Rosmarinus officinalis extract. Dig J Nanomater Bios 8(1):273–280

    Google Scholar 

  • Tam K, Ho CT, Lee JH et al (2010) Growth mechanism of amorphous selenium nanoparticles synthesized by Shewanella sp. HN-41. Biosci Biotechnol Biochem 74(4):696–700

    Article  CAS  Google Scholar 

  • Umer A, Naveed S, Ramzan N et al (2014) A green method for the synthesis of copper nanoparticles using L-ascorbic acid. Materia (Rio J) 19(3):197–203

    Article  Google Scholar 

  • Velvizhi K, Ravi S (2016) Green synthesize and characterization of the plant mediated silver nanoparticles using Solanum nigrum leaf extract. Int J Sci Res (IJSR) Index Copern Value 79:57

    Google Scholar 

  • Vijayaraghavan K, Ashokkumara T (2017) Plant-mediated biosynthesis of metallic nanoparticles: a review of literature, factors affecting synthesis, characterization techniques and applications. J Environ Chem Eng 5(5):4866–4883

    Article  CAS  Google Scholar 

  • Yilmaz M, Turkdemir H, Kilic MA et al (2011) Biosynthesis of silver nanoparticles using leaves of Stevia rebaudiana. Mater Chem Phys 130(3):1195–1202

    Article  CAS  Google Scholar 

  • Zhou Y, Kong Y, Kundu S et al (2012) Antibacterial activities of gold and silver nanoparticles against Escherichia coli and Bacillus Calmette Guerin. J Nanobiotechnol 10(19):1–9

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irshad Ul Haq Bhat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhat, I.U.H., Anwar, S.J., Subramaniam, E., Shalla, A.H. (2019). Nanoparticles; Their Use as Antibacterial and DNA Cleaving Agents. In: Bhat, A., Khan, I., Jawaid, M., Suliman, F., Al-Lawati, H., Al-Kindy, S. (eds) Nanomaterials for Healthcare, Energy and Environment. Advanced Structured Materials, vol 118. Springer, Singapore. https://doi.org/10.1007/978-981-13-9833-9_4

Download citation

Publish with us

Policies and ethics