Skip to main content

Self-Assembly of Ferritin: Structure, Biological Function and Potential Applications in Nanotechnology

  • Chapter
  • First Online:
Biological and Bio-inspired Nanomaterials

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1174))

Abstract

Protein cages are normally formed by the self-assembly of multiple protein subunits and ferritin is a typical example of a protein cage structure. Ferritin is a ubiquitous multi-subunit iron storage protein formed by 24 polypeptide chains that self-assemble into a hollow, roughly spherical protein cage. Ferritin has external and internal diameters of approximately 12 nm and 8 nm, respectively. Functionally, ferritin performs iron sequestration and is highly conserved in evolution. The interior cavity of ferritin provides a unique reaction vessel to carry out reactions separated from the exterior environment. In nature, the cavity is utilized for sequestration of iron and bio-mineralization as a mechanism to render iron inert and safe from the external environment. Material scientists have been inspired by this system and exploited a range of ferritin superfamily proteins as supramolecular templates to encapsulate different carrier molecules ranging from cancer drugs to therapeutic proteins, in addition to using ferritin proteins as well-defined building blocks for fabrication. Besides the interior cavity, the exterior surface and sub-unit interface of ferritin can be modified without affecting ferritin assembly.

Brief Description

This chapter will describe the self-assembly properties of the iron-carrying protein ferritin into nanoscale structures and their biological properties as well as their applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Norn CH, André I (2016) Computational design of protein self-assembly. Curr Opin Struct Biol 39:39–45

    Article  CAS  PubMed  Google Scholar 

  2. Marsh JA, Teichmann SA (2015) Structure, dynamics, assembly, and evolution of protein complexes. Annu Rev Biochem 84:551–575

    Article  CAS  PubMed  Google Scholar 

  3. Gradišar H, Jerala R (2014) Self-assembled bionanostructures: proteins following the lead of DNA nanostructures. J Nanobiotechnol 12:4

    Article  CAS  Google Scholar 

  4. Englander SW, Mayne L, Krishna MM (2007) Protein folding and misfolding: mechanism and principles. Q Rev Biophys 40(4):287–326

    Article  CAS  PubMed  Google Scholar 

  5. Davis L, Chin JW (2012) Designer proteins: applications of genetic code expansion in cell biology. Nat Rev Mol Cell Biol 13(3):168–182

    Article  CAS  PubMed  Google Scholar 

  6. Daube SS, Bar-Ziv RH (2013) Protein nanomachines assembly modes: cell-free expression and biochip perspectives. Wiley Interdiscip Rev Nanomed Nanobiotechnol 5(6):613–628

    Article  CAS  PubMed  Google Scholar 

  7. Luo Q, Hou C, Bai Y, Wang R, Liu J (2016) Protein assembly: versatile approaches to construct highly ordered nanostructures. Chem Rev. https://doi.org/10.1021/acs.chemrev.6b00228

    Article  CAS  PubMed  Google Scholar 

  8. Rother M, Nussbaumer MG, Renggli K, Bruns N (2016) Protein cages and synthetic polymers: a fruitful symbiosis for drug delivery applications, bionanotechnology and materials science. Chem Soc Rev 45(22):6213–6249

    Article  CAS  PubMed  Google Scholar 

  9. Corchero JL, Cedano J (2011) Self-assembling, protein-based intracellular bacterial organelles: emerging vehicles for encapsulating, targeting and delivering therapeutical cargoes. Microb Cell Factories 3(10):92

    Article  CAS  Google Scholar 

  10. Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU (2013) Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem 82:323–355

    Article  CAS  PubMed  Google Scholar 

  11. Pieters BJ, van Eldijk MB, Nolte RJ, Mecinović J (2016) Natural supramolecular protein assemblies. Chem Soc Rev 45(1):24–39

    Article  CAS  PubMed  Google Scholar 

  12. Jutz G, van Rijn P, Santos Miranda B, Böker A (2015) Ferritin: a versatile building block for bionanotechnology. Chem Rev 115(4):1653–1701

    Article  CAS  PubMed  Google Scholar 

  13. Zhang Y, Ardejani MS, Orner BP (2016) Design and applications of protein-cage-based nanomaterials. Chem Asian J 11(20):2814–2828

    Article  CAS  PubMed  Google Scholar 

  14. Truffi M, Fiandra L, Sorrentino L, Monieri M, Corsi F, Mazzucchelli S (2016) Ferritin nanocages: a biological platform for drug delivery, imaging and theranostics in cancer. Pharmacol Res 107:57–65

    Article  CAS  PubMed  Google Scholar 

  15. Lawson DM, Artymiuk PJ, Yewdall SJ, Smith JM, Livingstone JC, Treffry A, Luzzago A, Levi S, Arosio P, Cesareni G et al (1991) Solving the structure of human H ferritin by genetically engineering intermolecular crystal contacts. Nature 349(6309):541–544

    Article  CAS  PubMed  Google Scholar 

  16. He D, Marles-Wright J (2015) Ferritin family proteins and their use in bio nanotechnology. New Biotechnol 32(6):651–657

    Article  CAS  Google Scholar 

  17. Worwood M, Brook JD, Cragg SJ, Hellkuhl B, Jones BM, Perera P, Roberts SH, Shaw DJ (1985) Assignment of human ferritin genes to chromosomes 11 and 19q13.3-19qter. Hum Genet 69(4):371–374

    Article  CAS  PubMed  Google Scholar 

  18. Crichton RR, Declercq JP (2010) X-ray structures of ferritins and related proteins. Biochim Biophys Acta 1800(8):706–718

    Article  CAS  PubMed  Google Scholar 

  19. Ha Y, Shi D, Small GW, Theil EC, Allewell NM (1999) Crystal structure of bullfrog M ferritin at 2.8A resolution: analysis of subunit interactions and the binuclear metal center. J Biol Inorg Chem 4(3):243–256

    Article  CAS  PubMed  Google Scholar 

  20. Jutz G, Böker A (2011) Bionanoparticles as functional macromolecular building blocks – a new class of nanomaterials. Polymer 52(2):211–232

    Article  CAS  Google Scholar 

  21. Andrews SC (2010) The ferritin-like superfamily: evolution of the biological iron storeman from a rubrerythrin-like ancestor. Biochim Biophys Acta 1800(8):691–705

    Article  CAS  PubMed  Google Scholar 

  22. Zhang Y, Orner BP (2011) Self-assembly in the ferritin nano-cage protein superfamily. Int J Mol Sci 12:5406–5421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Grant RA, Filman DJ, Finkel SE, Kolter R, Hogle JM (1998) The crystal structure of Dps, a ferritin homolog that binds and protects DNA. Nat Struct Biol 5(4):294–303

    Article  CAS  PubMed  Google Scholar 

  24. Hasan MR, Tosha T, Theil EC (2008) Ferritin contains less iron (59Fe) in cells when the protein pores are unfolded by mutation. J Biol Chem 283(46):31394–31400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zang J, Chen H, Zhao G, Wang F, Ren F (2016) Ferritin cage for encapsulation and delivery of bioactive nutrients: from structure, property to applications. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2016.1149690

    Article  CAS  Google Scholar 

  26. Plath LD, Ozdemir A, Aksenov AA, Bier ME (2015) Determination of iron content and dispersity of intact ferritin by superconducting tunnel junction cryo-detection mass spectrometry. Anal Chem 87(17):8985–8993

    Article  CAS  PubMed  Google Scholar 

  27. Sato D, Ohtomo H, Yamada Y, Hikima T, Kurobe A, Fujiwara K, Ikeguchi M (2016) Ferritin assembly revisited: a time-resolved Small-angle X-ray scattering study. Biochemistry 55(2):287–293

    Article  CAS  PubMed  Google Scholar 

  28. Kim M, Rho Y, Jin KS, Ahn B, Jung S, Kim H, Ree M (2011) pH-dependent structures of ferritin and apoferritin in solution: disassembly and reassembly. Biomacromolecules 12(5):1629–1640

    Article  CAS  PubMed  Google Scholar 

  29. Ghisaidoobe AB, Chung SJ (2015) Functionalized protein nanocages as a platform of targeted therapy and immune detection. Nanomedicine 10(24):3579–3595

    Article  CAS  PubMed  Google Scholar 

  30. Uchida M, Kang S, Reichhardt C, Harlen K, Douglas T (2010) The ferritin superfamily: supramolecular templates for materials synthesis. Biochim Biophys Acta 1800(8):834–845

    Article  CAS  PubMed  Google Scholar 

  31. Tetter S, Hilvert D (2017) Enzyme encapsulation by a ferritin cage. Angew Chem Int Ed Engl 56(47):14933–14936

    Article  CAS  PubMed  Google Scholar 

  32. Kim S, Jeon JO, Jun E, Jee J, Jung HK, Lee BH, Kim IS, Kim S (2016) Designing peptide bunches on nanocage for bispecific or super-affinity targeting. Biomacromolecules 17(3):1150–1159

    Article  CAS  PubMed  Google Scholar 

  33. Chasteen ND, Harrison PM (1999) Mineralization in ferritin: an efficient means of iron storage. J Struct Biol 126(3):182–194

    Article  CAS  PubMed  Google Scholar 

  34. Yamashita I, Hayashi J, Hara M (2004) Bio-template synthesis of uniform CdSe nanoparticles using cage-shaped protein apoferritin. Chem Lett 33:1158–1159

    Article  CAS  Google Scholar 

  35. Iwahori K, Yoshizawa K, Muraoka M, Yamashita I (2005) Fabrication of ZnSe nanoparticles in the apoferritin cavity by designing a slow chemical reaction system. Inorg Chem 44:6393–6400

    Article  CAS  PubMed  Google Scholar 

  36. Yang Z, Wang X, Diao H, Zhang J, Li H, Sun H, Guo Z (2007) Encapsulation of platinum anticancer drugs by apoferritin. Chem Commun 33:3453–3455

    Article  CAS  Google Scholar 

  37. Xing R, Wang X, Zhang C, Zhang Y, Wang Q, Yang Z, Guo Z (2009) Characterization and cellular uptake of platinum anticancer drugs encapsulated in apoferritin. J Inorg Biochem 103(7):1039–1044

    Article  CAS  PubMed  Google Scholar 

  38. Ji XT, Huang L, Huang HQ (2012) Construction of nanometer cisplatin core-ferritin (NCC-F) and proteomic analysis of gastric cancer cell apoptosis induced with cisplatin released from the NCC-F. J Proteome 75(11):3145–3157

    Article  CAS  Google Scholar 

  39. Falvo E, Tremante E, Fraioli R, Leonetti C, Zamparelli C, Boffi A, Morea V, Ceci P, Giacomini P (2013) Antibody-drug conjugates: targeting melanoma with cisplatin encapsulated in protein-cage nanoparticles based on human ferritin. Nanoscale 5:12278–12285

    Article  CAS  PubMed  Google Scholar 

  40. Zhen Z, Tang W, Chen H, Lin X, Todd T, Wang G, Cowger T, Chen X, Xie J (2013) RGD modified apoferritin nanoparticles for efficient drug delivery to tumors. ACS Nano 7(6):4830–4837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vannucci L, Falvo E, Fornara M, Micco P, Benada O, Krizan J, Svoboda J, Hulikova-Capkova K, Morea V, Boffi A, Ceci P (2012) Selective targeting of melanoma by PEG-masked protein-based multifunctional nanoparticles. Int J Nanomed 7:1489–1509

    CAS  Google Scholar 

  42. Lee JH, Seo HS, Song JA, Kwon KC, Lee EJ, Kim HJ, Lee EB, Cha YJ, Lee J (2013) Proteinticle engineering for accurate 3D diagnosis. ACS Nano 7:10879–10886

    Article  CAS  PubMed  Google Scholar 

  43. Cutrin JC, Crich SG, Burghelea D, Dastrù W, Aime S (2013) Curcumin/Gd loaded apoferritin: a novel “theranostic” agent to prevent hepatocellular damage in toxic induced acute hepatitis. Mol Pharm 10(5):2079–2085

    Article  CAS  PubMed  Google Scholar 

  44. Kim M, Rho Y, Jin KS, Ahn B, Jung S, Kim H, Ree M (2011) pH-dependent structures of ferritin and apoferritin in solution: disassembly and reassembly. Biomacromolecules 12(5):1629–1640

    Article  CAS  PubMed  Google Scholar 

  45. Liang M, Fan K, Zhou M, Duan D, Zheng J, Yang D, Feng J, Yan X (2014) H-ferritin-nanocaged doxorubicin nanoparticles specifically target and kill tumors with a single-dose injection. Proc Natl Acad Sci USA 111(41):14900–14905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhao Y, Liang M, Li X, Fan K, Xiao J, Li Y, Shi H, Wang F, Choi HS, Cheng D, Yan X (2016) Bioengineered magnetoferritin nanoprobes for single-dose nuclear-magnetic resonance tumor imaging. ACS Nano 10(4):4184–4191

    Article  CAS  PubMed  Google Scholar 

  47. Chen TT, Li L, Chung DH, Allen CD, Torti SV, Torti FM, Cyster JG, Chen CY, Brodsky FM, Niemi EC, Nakamura MC, Seaman WE, Daws MR (2005) TIM-2 is expressed on B cells and in liver and kidney and is a receptor for H-ferritin endocytosis. J Exp Med 202(7):955–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mendes-Jorge L, Ramos D, Valença A, López-Luppo M, Pires VMR, Catita J, Nacher V, Navarro M, Carretero A, Rodriguez-Baeza A, Ruberte J (2014) L-ferritin binding to Scara5: a new Iron traffic pathway potentially implicated in retinopathy. PLoS One 9(9):e106974. https://doi.org/10.1371/journal.pone.0106974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kim S, Kim GS, Seo J, Gowri Rangaswamy G, So IS, Park RW, Lee BH, Kim IS (2016) Double-chambered ferritin platform: dual-function payloads of cytotoxic peptides and fluorescent protein. Biomacromolecules 17(1):12–19

    Article  CAS  PubMed  Google Scholar 

  50. Kanekiyo M, Wei CJ, Yassine HM, McTamney PM, Boyington JC, Whittle JR, Rao SS, Kong WP, Wang L, Nabel GJ (2013) Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature 499(7456):102–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Han JA, Kang YJ, Shin C, Ra JS, Shin HH, Hong SY, Do Y, Kang S (2014) Ferritin protein cage nanoparticles as versatile antigen delivery nanoplatforms for dendritic cell (DC)-based vaccine development. Nanomedicine 10(3):561–569

    Article  CAS  PubMed  Google Scholar 

  52. Crich SG, Bussolati B, Tei L, Grange C, Esposito G, Lanzardo S, Camussi G, Aime S (2006) Magnetic resonance visualization of tumor angiogenesis by targeting neural cell adhesion molecules with the highly sensitivegadolinium-loaded apoferritin probe. Cancer Res 66:9196–9201

    Article  CAS  Google Scholar 

  53. Hwang M, Lee JW, Lee KE, Lee KH (2013) Think modular: a simple apoferritin-based platform for the multifaceted detection of pancreatic cancer. ACS Nano 9:8167–8174

    Article  CAS  Google Scholar 

  54. Sosnovik DE, Caravan P (2009) Molecular MRI of atherosclerotic plaque with targeted contrast agents. Curr Cardiovasc Imaging Rep 2(2):87–94

    Article  PubMed  PubMed Central  Google Scholar 

  55. López-Sagaseta J, Malito E, Rappuoli R, Bottomley MJ (2015) Self-assembling protein nanoparticles in the design of vaccines. Comput Struct Biotechnol J 14:58–68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Beck T, Tetter S, Künzle M, Hilvert D (2015) Construction of Matryoshka-type structures from supercharged protein nanocages. Angew Chem Int Ed Engl 54(3):937–940

    Article  CAS  PubMed  Google Scholar 

  57. Chandramouli B, Bernacchioni C, Di Maio D, Turano P, Brancato G (2016) Electrostatic and structural bases of Fe2+ translocation through ferritin channels. J Biol Chem 291(49):25617–25628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Crichton RR, Declercq JP (2010) X­ray structures of ferritins and related proteins. Biochim Biophys Acta 1800(8):706–718

    Article  CAS  PubMed  Google Scholar 

  59. Truffi M, Fiandra L, Sorrentino L, Monieri M, Corsi F, Mazzucchelli S (2016) Ferritin nanocages: a biological platform for drug delivery, imaging and theranostics in cancer. Pharmacol Res 107:57–65

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumyananda Chakraborti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chakraborti, S., Chakrabarti, P. (2019). Self-Assembly of Ferritin: Structure, Biological Function and Potential Applications in Nanotechnology. In: Perrett, S., Buell, A., Knowles, T. (eds) Biological and Bio-inspired Nanomaterials. Advances in Experimental Medicine and Biology, vol 1174. Springer, Singapore. https://doi.org/10.1007/978-981-13-9791-2_10

Download citation

Publish with us

Policies and ethics