Skip to main content

Dynamics and Control of Peptide Self-Assembly and Aggregation

  • Chapter
  • First Online:
Biological and Bio-inspired Nanomaterials

Abstract

The aggregation of proteins into fibrillar structures is a central process implicated in the onset and development of several devastating neuro-degenerative diseases, but can, in contrast to these pathological roles, also fulfil important biological functions. In both scenarios, an understanding of the mechanisms by which soluble proteins convert to their fibrillar forms represents a fundamental objective for molecular sciences. This chapter details the different classes of microscopic processes responsible for this conversion and discusses how they can be described by a mathematical formulation of the aggregation kinetics. We present easily accessible experimental quantities that allow the determination of the dominant pathways of aggregation, as well as a general strategy to obtain detailed solutions to the kinetic rate laws that yield the microscopic rate constants of the individual processes of nucleation and growth. This chapter discusses a framework for a structured approach to address key questions regarding the dynamics of protein aggregation and shows how the use of chemical kinetics to tackle complex biophysical systems can lead to a deeper understanding of the underlying physical and chemical principles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Dissociation ensures that fibril growth is reversible, in accordance with the principle of detailed balance, however, in most aggregation reactions which are performed at significant supersaturation this process does not have significant influence on the time course of the aggregate mass, which is the observable of main interest to our discussion (see Sect. 1.2.3, “Common Approximations”). It becomes relevant only at the very late stages of the aggregation process, when the aggregate mass has equilibrated and the aggregate length distribution tends towards an exponential distribution [27]. Equally the reverse of fragmentation is negligible and thus ignored.

  2. 2.

    When analysing the kinetics of aggregate formation, we simply fit rate laws and obtain rate constants and reaction orders, but we do not directly monitor the process. The microscopic mechanism is inferred by our interpretation of the fitted parameters. This leads to an interesting phenomenon: From a mathematical point of view, considering only the moment equations (1.8) and (1.9), fragmentation and secondary nucleation with n 2 = 0 (i.e. the rate determining step of secondary nucleation is monomer independent, see Sect. 1.3.2) are equivalent and hence indistinguishable in this kind of kinetic analysis. In order to distinguish between these two possibilities, experiments that yield information on the fibril distribution are necessary. This could constitute measurements of the full length distribution of fibrils, use trapping of fibrils in filters to test for seeding of monomer nucleation or employ the addition of specific labels to fibrils and monomer [43,44,45].

  3. 3.

    Note that the fixed-point operator takes the form of Eq. (1.10) as long as the equation for dM∕dt, Eq. (1.9) remains unchanged.

  4. 4.

    Note that for a simple serial reaction, without catalyst, the rate of formation of product depends on the rates of the individual reactions in a multiplicative fashion, so no saturation effects emerge and the overall monomer dependence will remain constant.

  5. 5.

    However, keep in mind that the rates and reaction orders of such coarse-grained processes are not as straightforward to interpret on a molecular level as in elementary reactions.

  6. 6.

    Fragmentation is a first order reaction, dependent only on fibril mass and could reasonably be expected to follow single-step kinetics. No kinetic evidence for its multi-step nature exists to date, so it is not discussed here.

  7. 7.

    As described in Sect. 1.2.3, “Common Approximations”, the mass produced by nucleation can be neglected relative to that generated through elongation.

  8. 8.

    This is a treatment of inhibition as a perturbation to the models for aggregation of pure protein and does not explicitly include reactions of the inhibitor with the various species in the aggregation reaction network. Therefore, it does not reproduce intricate effects, for example due to the kinetics of inhibitor binding, but it does to a very good approximation yield the same overall behaviour as the more complex approach and is thus sufficient for the purposes of illustrating the effect or establishing which species is targeted by the inhibitor.

References

  1. Sawaya MR, Sambashivan S, Nelson R, Ivanova MI, Sievers SA, Apostol MI, Thompson MJ, Balbirnie M, Wiltzius JJW, McFarlane HT, Madsen A, Riekel C, Eisenberg D (2007) Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature 447(7143):453–457

    Article  CAS  PubMed  Google Scholar 

  2. Sunde M, Blake C (1997) The structure of amyloid fibrils by electron microscopy and x-ray diffraction. Adv Protein Chem 50:123–159

    Article  CAS  PubMed  Google Scholar 

  3. Knowles TPJ, Vendruscolo M, Dobson CM (2014) The amyloid state and its association with protein misfolding diseases. Nat Rev Mol Cell Biol 15:384–396

    Article  CAS  PubMed  Google Scholar 

  4. Ciryam P, Tartaglia GG, Morimoto RI, Dobson CM, Vendruscolo M (2013) Widespread aggregation and neurodegenerative diseases are associated with supersaturated proteins. Cell Rep 5(3):781–790

    Article  CAS  PubMed  Google Scholar 

  5. Boller F, Mizutani T, Roessmann U, Gambetti P (1980) Parkinson disease, dementia, and alzheimer disease: clinicopathological correlations. Ann Neurol 7(4):329–335

    Article  CAS  PubMed  Google Scholar 

  6. Lansbury PT, Lashuel HA (2006) A century-old debate on protein aggregation and neurodegeneration enters the clinic. Nature 443(7113):774–779

    Article  CAS  PubMed  Google Scholar 

  7. Bemporad F, Chiti F (2012) Protein misfolded oligomers: experimental approaches, mechanism of formation, and structure-toxicity relationships. Chem Biol 19(3):315–327

    Article  CAS  PubMed  Google Scholar 

  8. Oosawa F, Kasai M (1962) A theory of linear and helical aggregations of macromolecules. J Mol Biol 4:10–21

    Article  CAS  PubMed  Google Scholar 

  9. Oosawa F, Asakura S (1975) Thermodynamics of the polymerization of protein. Academic, New York

    Google Scholar 

  10. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th edn. Garland Publishing, New York

    Google Scholar 

  11. Hill TL (1987) Linear aggregation theory in cell biology. Springer, New York

    Book  Google Scholar 

  12. Fowler DM, Koulov AV, Balch WE, Kelly JW (2007) Functional amyloid–from bacteria to humans. Trends Biochem Sci 32(5):217–224

    Article  CAS  PubMed  Google Scholar 

  13. Kelly JW, Balch WE (2003) Amyloid as a natural product. J Cell Biol 161:461–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fowler DM, Koulov AV, Alory-Jost C, Marks MS, Balch WE, Kelly JW (2006) Functional amyloid formation within mammalian tissue. PLoS Biol 4(1):e6

    Article  PubMed  CAS  Google Scholar 

  15. Maji SK, Perrin MH, Sawaya MR, Jessberger S, Vadodaria K, Rissman RA, Singru PS, Nilsson KPR, Simon R, Schubert D, Eisenberg D, Rivier J, Sawchenko P, Vale W, Riek R (2009) Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science 325(5938):328–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Talbot NJ, Kershaw MJ, Wakley GE, De Vries OMH, Wessels JGH, Hamer JE (1996) Mpg1 encodes a fungal hydrophobin involved in surface interactions during infection-related development of magnaporthe grisea. Plant Cell 8(6):985–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Romero D, Aguilar C, Losick R, Kolter R (2010) Amyloid fibers provide structural integrity to bacillus subtilis biofilms. Proc Natl Acad Sci U S A 107(5):2230–2234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chapman MR, Robinson LS, Pinkner JS, Roth R, Heuser J, Hammar M, Normark S, Hultgren SJ (2002) Role of escherichia coli curli operons in directing amyloid fiber formation. Science 295(5556):851–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mankar S, Anoop A, Sen S, Maji SK (2011) Nanomaterials: amyloids reflect their brighter side. Nano Rev 2:6032. https://doi.org/10.3402/nano.v2i0.6032

    Article  Google Scholar 

  20. Bolisetty S, Mezzenga R (2015) Amyloid-carbon hybrid membranes for universal water purification. Nat Nano 11:365–371

    Article  CAS  Google Scholar 

  21. Dobson CM (1999) Protein misfolding, evolution and disease. Trends Biochem Sci 24(9):329–332

    Article  CAS  PubMed  Google Scholar 

  22. Ferrone F (1999) Analysis of protein aggregation kinetics. Methods Enzymol 309:256–274

    Article  CAS  PubMed  Google Scholar 

  23. Knowles TPJ, Waudby CA, Devlin GL, Cohen SIA, Aguzzi A, Vendruscolo M, Terentjev EM, Welland ME, Dobson CM (2009) An analytical solution to the kinetics of breakable filament assembly. Science 326(5959):1533–1537

    Article  CAS  PubMed  Google Scholar 

  24. Galvagnion C, Buell AK, Meisl G, Michaels TCT, Vendruscolo M, Knowles TPJ, Dobson CM (2015) Lipid vesicles trigger a-synuclein aggregation by stimulating primary nucleation. Nat Chem Biol 11:229–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Grigolato F, Colombo C, Ferrari R, Rezabkova L, Arosio P (2017) Mechanistic origin of the combined effect of surfaces and mechanical agitation on amyloid formation. ACS Nano 11(11):11358–11367. PMID: 29045787

    Article  CAS  PubMed  Google Scholar 

  26. Pham CLL, Rey A, Lo V, Soulès M, Ren Q, Meisl G, Knowles TPJ, Kwan AH, Sunde M (2016) Self-assembly of MPG1, a hydrophobin protein from the rice blast fungus that forms functional amyloid coatings, occurs by a surface-driven mechanism. Sci Rep 6:25288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Michaels TCT, Garcia GA, Knowles TPJ (2014) Asymptotic solutions of the oosawa model for the length distribution of biofilaments. J Chem Phys 140(19):194906

    Article  PubMed  CAS  Google Scholar 

  28. Ruschak AM, Miranker AD (2007) Fiber-dependent amyloid formation as catalysis of an existing reaction pathway. Proc Natl Acad Sci U S A 104(30):12341–12346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xue W-F, Hellewell AL, Gosal WS, Homans SW, Hewitt EW, Radford SE (2009) Fibril fragmentation enhances amyloid cytotoxicity. J Biol Chem 284(49):34272–34282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cohen SIA, Linse S, Luheshi LM, Hellstrand E, White DA, Rajah L, Otzen DE, Vendruscolo M, Dobson CM, Knowles TPJ (2013) Proliferation of amyloid-beta42 aggregates occurs through a secondary nucleation mechanism. Proc Natl Acad Sci 110:9758–9763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Collins SR, Douglass A, Vale RD, Weissman JS (2004) Mechanism of prion propagation: amyloid growth occurs by monomer addition. PLoS Biol 2(10):e321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Kunes KC, Cox DL, Singh RRP (2005) One-dimensional model of yeast prion aggregation. Phys Rev E Stat Nonlin Soft Matter Phys 72(5 Pt 1):051915

    Article  CAS  PubMed  Google Scholar 

  33. Stöhr J, Weinmann N, Wille H, Kaimann T, Nagel-Steger L, Birkmann E, Panza G, Prusiner SB, Eigen M, Riesner D (2008) Mechanisms of prion protein assembly into amyloid. Proc Natl Acad Sci U S A 105(7):2409–2414

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ferrone FA, Hofrichter J, Eaton WA (1985) Kinetics of sickle hemoglobin polymerization. I. Studies using temperature-jump and laser photolysis techniques. J Mol Biol 183(4):591–610

    CAS  PubMed  Google Scholar 

  35. Ferrone FA, Hofrichter J, Eaton WA (1985) Kinetics of sickle hemoglobin polymerization. II. A double nucleation mechanism. J Mol Biol 183(4):611–631

    CAS  Google Scholar 

  36. Bishop MF, Ferrone FA (1984) Kinetics of nucleation-controlled polymerization. A perturbation treatment for use with a secondary pathway. Biophys J 46(5):631–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cohen SIA, Vendruscolo M, Dobson CM, Knowles TPJ (2012) From macroscopic measurements to microscopic mechanisms of protein aggregation. J Mol Biol 421(2–3):160–171

    Article  CAS  PubMed  Google Scholar 

  38. Buell AK, Galvagnion C, Gaspar R, Sparr E, Vendruscolo M, Knowles TPJ, Linse S, Dobson CM (2014) Solution conditions determine the relative importance of nucleation and growth processes in α-synuclein aggregation. Proc Natl Acad Sci 111(21):7671–7676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Knowles TPJ, Buehler MJ (2011) Nanomechanics of functional and pathological amyloid materials. Nat Nanotechnol 6(8):469–479

    Article  CAS  PubMed  Google Scholar 

  40. Meisl G, Rajah L, Cohen SAI, Pfammatter M, Saric A, Hellstrand E, Buell AK, Aguzzi A, Linse S, Vendruscolo M, Dobson CM, Knowles TPJ (2017) Scaling behaviour and rate-determining steps in filamentous self-assembly. Chem Sci 8:7087–7097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Krapivsky PL, Redner S, Ben-Naim E (2010) A kinetic view of statistical physics. Cambridge University Press, Leiden

    Book  Google Scholar 

  42. Xue W-F, Homans SW, Radford SE (2008) Systematic analysis of nucleation-dependent polymerization reveals new insights into the mechanism of amyloid self-assembly. Proc Natl Acad Sci U S A 105(26):8926–8931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Arosio P, Cedervall T, Knowles TPJ, Linse S (2016) Analysis of the length distribution of amyloid fibrils by centrifugal sedimentation. Anal Biochem 504:7–13

    Article  CAS  PubMed  Google Scholar 

  44. Nasir I, Linse S, Cabaleiro-Lago C (2015) Fluorescent filter-trap assay for amyloid fibril formation kinetics in complex solutions. ACS Chem Neurosci (8):1436–1444. PMID: 25946560

    Article  CAS  Google Scholar 

  45. Gaspar R, Meisl G, Buell AK, Young L, Kaminski CF, Knowles TPJ, Sparr E, Linse S (2017) Secondary nucleation of monomers on fibril surface dominates α-synuclein aggregation and provides autocatalytic amyloid amplification. Q Rev Biophys 50:E6

    Article  PubMed  Google Scholar 

  46. Bender CM, Orszag SA (1999) Advanced mathematical methods for scientists and engineers. Springer, New York

    Book  Google Scholar 

  47. Meisl G, Kirkegaard JB, Arosio P, Michaels TTC, Vendruscolo M, Dobson CM, Linse S, Knowles TPJ (2016) Molecular mechanisms of protein aggregation from global fitting of kinetic models. Nat Protoc 11(2):252–272

    Article  CAS  PubMed  Google Scholar 

  48. Cohen SIA, Vendruscolo M, Welland ME, Dobson CM, Terentjev EM, Knowles TPJ (2011) Nucleated polymerization with secondary pathways. I. Time evolution of the principal moments. J Chem Phys 135(6):065105

    Article  PubMed  CAS  Google Scholar 

  49. Cohen SIA, Vendruscolo M, Dobson CM, Knowles TPJ (2011) Nucleated polymerization with secondary pathways. II. Determination of self-consistent solutions to growth processes described by non-linear master equations. J Chem Phys 135(6):065106

    Article  PubMed  CAS  Google Scholar 

  50. Arosio P, Knowles TPJ, Linse S (2015) On the lag phase in amyloid fibril formation. Phys Chem Chem Phys 17:7606–7618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Knowles TPJ, White DA, Abate AR, Agresti JJ, Cohen SIA, Sperling RA, De Genst EJ, Dobson CM, Weitz DA (2011) Observation of spatial propagation of amyloid assembly from single nuclei. Proc Natl Acad Sci U S A 108(36):14746–14751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Meisl G, Yang X, Hellstrand E, Frohm B, Kirkegaard JB, Cohen SIA, Dobson CM, Linse S, Knowles TPJ (2014) Differences in nucleation behavior underlie the contrasting aggregation kinetics of the aβ40 and aβ42 peptides. Proc Natl Acad Sci 111:9384–9389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Meisl G, Yang X, Dobson CM, Linse S, Knowles TPJ (2017) Modulation of electrostatic interactions to reveal a reaction network unifying the aggregation behaviour of the aβ42 peptide and its variants. Chem Sci 8:4352–4362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Knowles TPJ, Vendruscolo M, Dobson CM (2015) The physical basis of protein misfolding disorders. Phys Today 68(3):36

    Article  CAS  Google Scholar 

  55. Lee J, Culyba EK, Powers ET, Kelly JW (2011) Amyloid-beta forms fibrils by nucleated conformational conversion of oligomers. Nat Chem Biol 7(9):602–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Scheibel T, Bloom J, Lindquist SL (2004) The elongation of yeast prion fibers involves separable steps of association and conversion. Proc Natl Acad Sci U S A 101(8):2287–2292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Esler WP, Stimson ER, Jennings JM, Vinters HV, Ghilardi JR, Lee JP, Mantyh PW, Maggio JE (2000) Alzheimer’s disease amyloid propagation by a template-dependent dock-lock mechanism. Biochemistry 39(21):6288–6295

    Article  CAS  PubMed  Google Scholar 

  58. Buell AK, Blundell JR, Dobson CM, Welland ME, Terentjev EM, Knowles TPJ (2010) Frequency factors in a landscape model of filamentous protein aggregation. Phys Rev Lett 104(22):228101

    Article  PubMed  CAS  Google Scholar 

  59. Michaelis L, Menten M (1913) Die kinetik der invertinwirkung. Biochem Z 49:333

    CAS  Google Scholar 

  60. Connors KA (1990) Chemical kinetics: study of reaction rates in solution. Wiley, New York

    Google Scholar 

  61. Orte A, Clarke R, Balasubramanian S, Klenerman D (2006) Determination of the fraction and stoichiometry of femtomolar levels of biomolecular complexes in an excess of monomer using single-molecule, two-color coincidence detection. Anal Chem 78(22):7707–7715

    Article  CAS  PubMed  Google Scholar 

  62. Garcia GA, Cohen SIA, Dobson CM, Knowles TPJ (2014) Nucleation-conversion-polymerization reactions of biological macromolecules with prenucleation clusters. Phys Rev E 89:032712

    Article  CAS  Google Scholar 

  63. Meisl G, Yang X, Frohm B, Knowles TPJ, Linse S (2016) Quantitative analysis of intrinsic and extrinsic factors in the aggregation mechanism of alzheimer-associated aβ-peptide. Sci Rep 6:18728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Saric A, Buell A, Meisl G, Michaels TCT, Dobson CM, Linse S, Knowles TPJ, Frenkel D (2016) Physical determinants of the self-replication of protein fibrils. Nat Phys 12:874–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Arosio P, Vendruscolo M, Dobson CM, Knowles TPJ (2014) Chemical kinetics for drug discovery to combat protein aggregation diseases. Trends Pharmacol Sci 35(3):127–135

    Article  CAS  PubMed  Google Scholar 

  66. Abelein A, Graslund A, Danielsson J (2015) Zinc as chaperone-mimicking agent for retardation of amyloid β peptide fibril formation. Proc Natl Acad Sci U S A 112(17):5407–5412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Klement K, Wieligmann K, Meinhardt J, Hortschansky P, Richter W, Fändrich M (2007) Effect of different salt ions on the propensity of aggregation and on the structure of Alzheimer’s abeta(1–40) amyloid fibrils. J Mol Biol 373(5):1321–1333

    Article  CAS  PubMed  Google Scholar 

  68. Buell AK, Hung P, Salvatella X, Welland ME, Dobson CM, Knowles TPJ (2013) Electrostatic effects in filamentous protein aggregation. Biophys J 104:1116–1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Flagmeier P, Meisl G, Vendruscolo M, Knowles TPJ, Dobson CM, Buell AK, Galvagnion C (2016) Mutations associated with familial parkinson’s disease alter the initiation and amplification steps of α-synuclein aggregation. Proc Natl Acad Sci U S A 113(37):10328–10333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yang X, Meisl G, Frohm B, Thulin E, Knowles TPJ, Linse S (2018) On the role of sidechain size and charge in the aggregation of aβ42 with familial mutations. Proc Natl Acad Sci U S A 115(26):E5849–E5858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cohen SIA, Arosio P, Presto J, Kurudenkandy FR, Biverstal H, Dolfe L, Dunning C, Yang X, Frohm B, Vendruscolo M, Johansson J, Dobson CM, Fisahn A, Knowles TPJ, Linse S (2015) The molecular chaperone brichos breaks the catalytic cycle that generates toxic ab oligomers. Nat Struct Mol Biol 22:207–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Arosio P, Michaels TCT, Linse S, Månsson C, Emanuelsson C, Presto J, Johansson J, Vendruscolo M, Dobson C, Knowles TPJ (2016) Kinetic analysis reveals the diversity of microscopic mechanisms through which molecular chaperones suppress amyloid formation. Nat Commun 7:10948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Habchi J, Arosio P, Perni M, Costa AR, Yagi-Utsumi M, Joshi P, Chia S, Cohen SIA, Müller MBD, Linse S, Nollen EAA, Dobson CM, Knowles TPJ, Vendruscolo M (2016) An anticancer drug suppresses the primary nucleation reaction that initiates the production of the toxic aβ42 aggregates linked with alzheimer’s disease. Sci Adv 2(2):e1501244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Swiss National Science Foundation, Peterhouse College Cambridge, the European Research Council, the BBSRC, the EPSRC, the Newman Foundation and Sidney Sussex College Cambridge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Meisl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meisl, G., Michaels, T.C.T., Arosio, P., Vendruscolo, M., Dobson, C.M., Knowles, T.P.J. (2019). Dynamics and Control of Peptide Self-Assembly and Aggregation. In: Perrett, S., Buell, A., Knowles, T. (eds) Biological and Bio-inspired Nanomaterials. Advances in Experimental Medicine and Biology, vol 1174. Springer, Singapore. https://doi.org/10.1007/978-981-13-9791-2_1

Download citation

Publish with us

Policies and ethics