Skip to main content
  • 586 Accesses

Abstract

As described in Chap. 2 and 3, reproduction of the subject’s own HRTFs provides accurate sound image localization. On the other hand, using the other’s HRTFs causes problems, such as front-back error, rising of a sound image, and inside-of-head localization. This chapter describes in detail past actions for the individualization of HRTFs and the latest findings in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Algazi VR, Avendano C, Duda RO (2001) Estimation of spherical–head model from anthropometry. J Audio Eng Soc 49:472–479

    Google Scholar 

  • Bernstein LR (2004) Sensitivity to interaural intensitive disparities:listeners’ use of potential cues. J Acoust Soc Am 115:3156–3160

    Article  Google Scholar 

  • Bomhardt R, Braren H, Fels J (2016) Individualization of head-related transfer functions using principal component analysis and anthropometric dimensions. Proc of Meetings on Acoustics 29:050007

    Article  Google Scholar 

  • Burkhard MD, Sachs RM (1975) Anthropometric manikin for acoustic research. J Acoust Soc Am 58:214–222

    Article  CAS  Google Scholar 

  • Chun CJ, Moon JM, Lee GW, Kim NK, Kim HK (2017) Deep neural network based HRTF personalization using anthropometric measurements. Audio Eng Soc Convention 143:9860

    Google Scholar 

  • Domnitz RH, Colburn HS (1977) Lateral position and interaural discrimination. J Acoust Soc Am 61:1586–1598

    Article  CAS  Google Scholar 

  • Hartmann WM, Constan ZA (2002) Interaural level differences and the level–meter model. J Acoust Soc Am 112:1037–1045

    Article  Google Scholar 

  • Hershkowitz RM, Durlach NI (1969) Interaural time and amplitude jnds for a 500- Hz tone. J Acoust Soc Am 46:1464–1467

    Article  CAS  Google Scholar 

  • Iida K, Ishii Y (2011a) 3D sound image control by individualized parametric head-related transfer functions in proc. Inter-Noise 2011: 428959, Osaka, Japan

    Google Scholar 

  • Iida K, Ishii Y (2011b) Individualization of the head-related transfer functions in the basis of the spectral cues for sound localization. In: Suzuki Y, Brungart D, Iwaya Y, Iida K, Cabrera D, Kato H (eds) Principles and applications of spatial hearing. World Scientific Publishing, Singapore, pp 159–178

    Chapter  Google Scholar 

  • Iida K, Ishii Y, Nishioka S (2014) Personalization of head–related transfer functions in the median plane based on the anthropometry of the listener’s pinnae. J Acoust Soc Am 136:317–333

    Article  Google Scholar 

  • Iida K, Shimazaki H, Oota M (2019) generation of the individual head-related transfer functions in the upper median plane based on the anthropometry of the listener’s pinnae. Appl Acoust 155:280–285

    Google Scholar 

  • Ishii Y, Iida K (2017) Personalization of interaural difference cues based on the anthropometry of the listener’s head – estimation of interaural time difference –. Transaction of the Virtual Reality Society of Japan. 22: 405–412 (in Japanese)

    Google Scholar 

  • Iwaya Y (2006) Individualization of head–related transfer functions with tournament– style listening test:listening with other’s ears. Acoust Sci Tech 27:340–343

    Article  Google Scholar 

  • Kahana Y, Nelson PA (2006) Numerical modelling of the spatial acoustic response of the human pinna. J Sound Vibration 292:148–178

    Article  Google Scholar 

  • Katz BFG (2001) Boundary element method calculation of individual head–related transfer function. I. Rigid model calculation. J Acoust Soc Am 110:2440–2448

    Article  CAS  Google Scholar 

  • Kistler DJ, Wightman FL (1992) A model of head–related transfer functions based on principal components analysis and minimum–phase reconstruction. J Acoust Soc Am 91:1637–1647

    Article  CAS  Google Scholar 

  • Kreuzer W, Majdak P, Chen Z (2009) Fast multipole boundary element method to calculate head-related transfer functions for a wide frequency range. J Acoust Soc Am 126:1280–1290

    Article  Google Scholar 

  • Middlebrooks JC (1999a) Individual differences in external–ear transfer functions reduced by scaling in frequency. J Acoust Soc Am 106:1480–1492

    Article  CAS  Google Scholar 

  • Middlebrooks JC (1999b) Virtual localization improved by scaling nonindividualized external–ear transfer functions in frequency. J Acoust Soc Am 106:1493–1510

    Article  CAS  Google Scholar 

  • Middlebrooks JC, Green DM (1992) Observations on a principal components analysis of head–related transfer functions. J Acoust Soc Am 92:597–599

    Article  CAS  Google Scholar 

  • Mills AW (1958) On the minimum audible angle. J Acoust Soc Am 30:237–246

    Article  Google Scholar 

  • Mokhtari P, Takemoto H, Nishimura R, Kato H (2015) Frequency and amplitude estimation of the first peak of head–related transfer functions from individual pinna anthropometry. J Acoust Soc Am 137:690–701

    Article  Google Scholar 

  • Mokhtari P, Takemoto H, Nishimura R, Kato H (2016) Vertical normal modes of human ears:individual variation and frequency estimation from pinna anthropometry. J Acoust Soc Am 140:814–831

    Article  Google Scholar 

  • Møller H, Jensen CB, Hanmmershøi D, Sørensen MF (1996.5) Using a typical human subject for binaural recording. Audio Eng Soc Reprint 4157 (C–10)

    Google Scholar 

  • Møller H, Hanmmershøi D, Jensen CB, Sørensen MF (1999) Evaluation of artificial heads in listening tests. J Audio Eng Soc 47:83–100

    Google Scholar 

  • Reddy S, Hegde RM (2015) A joint sparsity and linear regression based method for customization of median plane. IEEE Asilomar, 785–789

    Google Scholar 

  • Seeber BU, Fastl H (2003) Subjective selection of non–individual head–related transfer functions, Proceedings of the 2003 international conference on auditory display, Boston, MA, USA, July 6–9, 2003 ICAD03–(1–4)

    Google Scholar 

  • Spagnol S, Avanzini F (2015) Frequency estimation of the first pinna notch in head–related transfer functions with a linear anthropometric model. Proc. of the 18th Int. conference on digital audio effects(DAFx-15), Trondheim, Norway, Nov 30 - Dec 3

    Google Scholar 

  • Takemoto H, Mokhtari P, Kato H, Nishimura R, Iida K (2012) Mechanism for generating peaks and notches of head–related transfer functions in the median plane. J Acoust Soc Am 132:3832–3841

    Article  Google Scholar 

  • Watanabe K, Iwaya Y, Gyoba J, Suzuki Y, Takane S (2005) An investigation on the estimation of interaural time difference based on anthropometric parameters TVRSJ. 10-4 : 609–618. (in Japanese)

    Google Scholar 

  • Watanabe K, Ozawa K, Iwaya Y, Suzuki Y, Aso K (2007) Estimation of interaural level difference based on anthropometry and its effect on sound localization. J Acoust Soc Am 122:2832–2841

    Article  Google Scholar 

  • Zotkin DN, Hwang J, Duraiswami R, Davis LS (2003) HRTF personalization using anthropometric measurements. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iida, K. (2019). Individuality of HRTF. In: Head-Related Transfer Function and Acoustic Virtual Reality. Springer, Singapore. https://doi.org/10.1007/978-981-13-9745-5_4

Download citation

Publish with us

Policies and ethics