Skip to main content

Integrating the Bioinformatics and Omics Tools for Systems Analysis of Abiotic Stress Tolerance in Oryza sativa (L.)

  • Chapter
  • First Online:
Advances in Plant Transgenics: Methods and Applications

Abstract

Abiotic stress can inflict limitations on plant growth, developmental processes and also crop productivity. Here we have portrayed advances in omics tools in the view of conservative and contemporary approaches that could be used to unravel abiotic stress tolerance in rice. Under stressful conditions, plants can develop diverse molecular mechanisms to combat stress challenges, while it is not sufficient to protect them. Hence, speculation of this study is essential for understanding how plants react to adverse environmental conditions with the hope of enhancing the tolerance of plants to abiotic stress. It could be addressed by computational biology (bioinformatics); invigorated sequencing approaches in genomics have paved the way for various analytical applications. Focusing on the technological advances, multiple new omics such as the transcriptome, metabolome, hormonome, epigenome, proteome and phenome have emerged. An emphasis was given to systems approaches with respect to abiotic stress. In addition, the availability of rice whole genome information, advancement and development of omics studies has improved to address the identification of unique and combined abiotic stress responsive cellular metabolisms and this enables the interaction between signalling pathways, molecular biological insights along with novel traits and their significance. Thus, this chapter provides the bioinformatics and systems biology aspects of abiotic stress responses by comparing it with the publically available omics and bioinformatics resources which could provide a base for detailed functional studies of stress tolerance in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexandrov N, Tai S, Wang W, Mansueto L, Palis K, Fuentes R, Ulat V, Chebotarov D, Zhang G, Li Z, Mauleon R, Hamilton R, McNally K (2014) SNP-Seek database of SNPs derived from 3000 rice genomes. Nucleic Acids Res 43:D1023–D1027

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ali GM, Komatsu S (2016) Proteomic analysis of rice leaf sheath during drought stress. J Proteome Res 5:396–403

    Article  CAS  Google Scholar 

  • Becker SA, Feist AM, Mo ML, Hannum G, Palsson B, Herrgard MJ (2007) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat Protoc 2:727–738

    Article  CAS  PubMed  Google Scholar 

  • Beste DJ, Hooper T, Stewart G, Bonde B, Avignone-Rossa C, Bushell ME, Wheeler P, Klamt S, Kierzek AM, McFadden J (2007) GSMN-TB: a web-based genome-scale network model of Mycobacterium tuberculosis metabolism. Genome Biol 8:R89

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blom C, Voesenek L (1996) Flooding: the survival strategies of plants. Trends Ecol Evolut 11:290–295

    Article  CAS  Google Scholar 

  • Boele J, Olivier BG, Teusink B (2012) FAME, the flux analysis and modeling environment. BMC Syst Biol 6:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Browne J (2007) History of plant science. In: Roberts K (ed) Handbook of plant science, 2nd edn. Wiley, Chicester, pp 3–7

    Google Scholar 

  • Christou P (1994) Rice as a global crop. In: Rice biotechnology and genetic engineering. Technomic Publishing Company, Inc, Lancaster, pp 1–38

    Google Scholar 

  • Cvijovic M, Olivares-Hernandez R, Agren R, Dahr N, Vongsangnak W, Nookaew I, Patil KR, Nielsen J (2010) BioMet Toolbox: genome-wide analysis of metabolism. Nucleic Acids Res 38:W144–W149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai Yin C, Yong Hai L, Min S, Da L, Hong Xuan L (2005) Salt-responsive genes in rice revealed by cDNA microarray analysis. Cell Res 15:796–810

    Article  Google Scholar 

  • de Carvalho MHC (2008) Drought stress and reactive oxygen species. Plant Signaling Behaviour 3:156–165

    Article  Google Scholar 

  • Degenkolbe T, Do PT, Zuther E, Repsilber D, Walther D, Hincha DK, Kohl KI (2009) Expression profiling of rice cultivars differing in their tolerance to long-term drought stress. Plant Mol Biol 69:133–153

    Article  CAS  PubMed  Google Scholar 

  • Dooki AD, Mayer-Posner FJ, Askari H, Aa Z, Salekdeh GH (2006) Proteomic responses of rice young panicles to salinity. Proteomics 6:6498–6507

    Article  CAS  PubMed  Google Scholar 

  • Droc G, Ruiz M, Larmande P, Pereira A, Piffanelli P, Morel JB, Dievart A, Courtois B, Guiderdoni E, Périn C (2005) OryGenesDB: a database for rice reverse genetics. Nucleic Acids Res 34:D737

    Google Scholar 

  • Duvick J, Fu A, Muppirala U, Sabharwal M, Wilkerso M, Lawrence C, Lushbough C, Brendel V (2008) PlantGDB: a resource for comparative plant genomics. Nucleic Acids Res 36:D959–D965

    Article  CAS  PubMed  Google Scholar 

  • Fan TM, Lane A, Higashi R (2003) In vivo and in vitro metabolomic analysis of anaerobic rice coleoptiles revealed unexpected pathways. Russ J Plant Physiol 50:787–793

    Article  CAS  Google Scholar 

  • Feng X, Xu Y, Chen Y, Tang YJ (2012) MicrobesFlux: a web platform for drafting metabolic models from the KEGG database. BMC Syst Biol 6:94

    Article  PubMed  PubMed Central  Google Scholar 

  • Gevorgyan A, Bushell ME, Avignone-Rossa C, Kierzek AM (2011) SurreyFBA: a command line tool and graphics user interface for constraint-based modeling of genome scale metabolic reaction networks. Bioinformatics 27:433–434

    Article  CAS  PubMed  Google Scholar 

  • Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186

    Article  CAS  PubMed  Google Scholar 

  • Gorantla M, Babu P, Lachagari VR, Reddy A, Wusirika R, Bennetzen JL, Reddy AR (2007) Identification of stress-responsive genes in an indica rice (Oryza sativa L.) using ESTs generated from drought-stressed seedlings. J Exp Bot 58:253–265

    Article  CAS  PubMed  Google Scholar 

  • Grafahrend-Belau E, Klukas C, Junker BH, Schreiber F (2009) FBA-SimVis: interactive visualization of constraint-based metabolic models. Bioinformatics 25:2755–2757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu H, Zhu P, Jiao Y, Meng Y, Chen M (2011) PRIN: a predicted rice interactome network. BMC Bioinform 12:161

    Article  Google Scholar 

  • Guglielminetti L, Perata P, Alpi A (1995) Effect of anoxia on carbohydrate metabolism in rice seedlings. Plant Physiol 108:735–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hadiarto T, Tran LSP (2011) Progress studies of drought-responsive genes in rice. Plant Cell Reports 30:297–310

    Article  CAS  PubMed  Google Scholar 

  • He G, Zhu X, Elling AA, Chen L, Wang X, Guo L (2010) Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. Plant Cell 22:17–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henry CS, DeJongh M, Best AA, Frybarger PM, Linsay B, Stevens RL (2010) High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat Biotechnol 28:977–982

    Article  CAS  PubMed  Google Scholar 

  • Hoppe A, Hoffmann S, Gerasch A, Gille C, Holzhutter HG (2011) FASIMU: flexible software for flux-balance computation series in large metabolic networks. BMC Bioinform 12:28

    Article  Google Scholar 

  • International Rice Genome Sequencing Project A (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  CAS  Google Scholar 

  • Jung TS, Yeo HC, Reddy SG, Cho WS, Lee DY (2009) WEbcoli: an interactive and asynchronous web application for in silico design and analysis of genome-scale E: coli model. Bioinformatics 25:2850–2852

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert HJ (2001) Gene expression profiles during the initial phase of salt stress in rice. The Plant Cell Online 13:889–905

    Article  CAS  Google Scholar 

  • Kersey PJ, Allen JE, Christensen M, Davis P, Falin LJ, Grabmueller C, Hughes DS, Humphrey J, Kerhornou A, Khobova J, Langridge N, McDowall MD, Maheswari U, Maslen G, Nuhn M, Ong CK, Paulini M, Pedro H, Toneva I, Tuli MA, Walts B, Williams G, Wilson D, Youens-Clark K, Monaco MK, Stein J, Wei X, Ware D, Bolser DM, Howe KL, Kulesha E, Lawson D, Staines DM (2014) Ensembl genomes 2013: scaling up access to genome-wide data. Nucleic Acids Res 42:D546–D552

    Article  CAS  PubMed  Google Scholar 

  • Kim DW, Rakwal R, Agrawal GK, Jung YH, Shibato J, Jwa NS, Iwahashi Y, Iwahashi H, Kim DH, Shim IS et al (2005) A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf. Electrophoresis 26:4521–4539

    Article  CAS  PubMed  Google Scholar 

  • Kim TY, Sohn SB, Kim YB, Kim WJ, Lee SY (2012) Recent advances in reconstruction and applications of genome-scale metabolic models. Curr Opin Biotechnol 23:617–623

    Article  CAS  PubMed  Google Scholar 

  • Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664

    Article  CAS  PubMed  Google Scholar 

  • Klamt S, Stelling J, Ginkel M, Gilles ED (2003) FluxAnalyzer: exploring structure, pathways, and flux distributions in metabolic networks on interactive flux maps. Bioinformatics 19:261–269

    Article  CAS  PubMed  Google Scholar 

  • Klamt S, Saez-Rodriguez J, Gilles ED (2007) Structural and functional analysis of cellular networks with CellNetAnalyzer. BMC Syst Biol 1:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Kompala DS, Ramkrishna D, Tsao GT (1984) Cybernetic modeling of microbial growth on multiple substrates. Biotechnol Bioeng 26:1272–1281

    Article  CAS  PubMed  Google Scholar 

  • Kurata N, Yamazaki Y (2006) Oryzabase. An integrated biological and genome information database for rice. Plant Physiol 140:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lack A, Evans D (2005) Understanding plants – methods in plant biology. In Plant biology. Taylor & Francis Group, New York, pp 5–16

    Google Scholar 

  • Lasanthi-Kudahettige R, Magneschi L, Loreti E, Gonzali S, Licausi F, Novi G, Beretta O, Vitulli F, Alpi A, Perata P (2007) Transcript profiling of the anoxic rice coleoptile. Plant Physiol 144:218–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latendresse M, Krummenacker M, Trupp M, Karp PD (2012) Construction and completion of flux balance models from pathway databases. Bioinformatics 28:388–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Fevre F, Smidtas S, Combe C, Durot M, d’Alche Buc F, Schachter V (2009) CycSim-an online tool for exploring and experimenting with genome-scale metabolic models. Bioinformatics 25:1987–1988

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee DY, Yun H, Park S, Lee SY (2003a) MetaFluxNet: the management of metabolic reaction information and quantitative metabolic flux analysis. Bioinformatics 19:2144–2146

    Article  CAS  PubMed  Google Scholar 

  • Lee SY, Lee DY, Hong SH, Kim TY, Yun H, Oh YG, Park S (2003b) MetaFluxNet, a program package for metabolic pathway construction and analysis, and its use in large-scale metabolic flux analysis of Escherichia coli. Genome Inform 14:23–33

    CAS  PubMed  Google Scholar 

  • Li X, Wang X, He K, Ma Y, Su N, He H (2008) High-resolution mapping of epigenetic modifications of the rice genome uncovers interplay between DNA methylation, histone methylation, and gene expression. Plant Cell 20:259–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao YC, Tsai MH, Chen FC, Hsiung CA (2012) GEMSiRV: a software platform for Genome-scale metabolic model simulation, reconstruction and visualization. Bioinformatics 28:1752–1758

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Mei Q, Yu Z, Sun T, Zhang Z, Chen M (2013) An integrative bioinformatics framework for genome-scale multiple level network reconstruction of rice. J Integr Bioinform 10(2):94–102

    Article  Google Scholar 

  • Muthuramalingam P, Krishnan SR, Pothiraj R, Ramesh M (2017) Global transcriptome analysis of combined abiotic stress signaling genes unravels key players in Oryza sativa L.: an in silico approach. Front Plant Sci 8:759

    Article  PubMed  PubMed Central  Google Scholar 

  • Muthuramalingam P, Krishnan SR, Saravanan K, Mareeswaran N, Kumar R, Ramesh M (2018a) Genome-wide identification of major transcription factor superfamilies in rice identifies key candidates involved in abiotic stress dynamism. J Plant Biochem Biotechnol:1–18

    Google Scholar 

  • Muthuramalingam P, Krishnan SR, Pandian S, Mareeswaran N, Aruni W, Pandian SK, Ramesh M (2018b) Global analysis of threonine metabolism genes unravel key players in rice to improve the abiotic stress tolerance. Sci Rep 8(1):9270

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Narsai R, Howell KA, Carroll A, Ivanova A, Millar AH, Whelan J (2009) Defining core metabolic and transcriptomic responses to oxygen availability in rice embryos and young seedlings. Plant Physiol 151:306–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neff MM, Fankhauser C, Chory J (2000) Light: an indicator of time and place. Genes Develop 14:257–271

    Google Scholar 

  • Negrao S, Courtois B, Ahmadi N, Abreu I, Saibo N, Oliveira M (2011) Recent updates on salinity stress in rice: from physiological to molecular responses. Crit Rev Plant Sci 30:329–377

    Article  CAS  Google Scholar 

  • Ni J, Pujar A, Youens-Clark K, Yap I, Jaiswal P, Tecle I, Tung C, Ren L, Spooner W, Wei X, Avraham S, Ware D, Stein L, McCouch S (2009) Gramene QTL database: development, content and applications. Database:Article ID bap005. https://doi.org/10.1093/database/bap005

  • Osakabe K, Osakabe Y (2012) Plant light stress. eLS

    Google Scholar 

  • Parker R, Flowers TJ, Moore AL, Harpham NV (2006) An accurate and reproducible method for proteome profiling of the effects of salt stress in the rice leaf lamina. J Exp Bot 57:1109–1118

    Article  CAS  PubMed  Google Scholar 

  • Perata P, Alpi A (1993) Plant responses to anaerobiosis. Plant Sci 93:1–17

    Article  CAS  Google Scholar 

  • Petryszak R, Keays M, Tang YA, Fonseca NA, Barrera E, Burdett T (2016) Expression Atlas update – an integrated database of gene and proteinexpression in humans, animals and plants. Nucleic Acids Res 44:746–752

    Article  CAS  Google Scholar 

  • Price ND, Reed JL, Palsson B (2004) Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev Microbiol 2:886–897

    Article  CAS  PubMed  Google Scholar 

  • Pruitt KD, Brown GR, Hiatt SM, Thibaud-Nissen F, Astashyn A, Ermolaeva O, Farrell CM, Hart J, Landrum MJ, McGarvey KM, Murphy MR, O’Leary NA, Pujar S, Rajput B, Rangwala SH, Riddick LD, Shkeda A, Sun H, Tamez P, Tully RE, Wallin C, Webb D, Weber J, Wu W, Dicuccio M, Kitts P, Maglott DR, Murphy TD, Ostell JM (2014) RefSeq: an update on mammalian reference sequences. Nucleic Acids Res 42:D756–D763

    Article  CAS  PubMed  Google Scholar 

  • Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, Yoshiwara K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133:1755–1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raghuvanshi S, Gour P, Joseph SV (2016) Manually Curated Database of Rice Proteins (MCDRP), a database of digitized experimental data on rice. Current Plant Biol 8:26–30

    Article  Google Scholar 

  • Raman K, Chandra N (2009) Flux balance analysis of biological systems: applications and challenges. Brief Bioinform 10:435–449

    Article  CAS  PubMed  Google Scholar 

  • Reder C (1988) Metabolic control theory: a structural approach. J Theor Biol 135:175–201

    Article  CAS  PubMed  Google Scholar 

  • Rocha I, Maia P, Evangelista P, Vilaca P, Soares S, Pinto JP, Nielsen J, Patil KR, Ferreira EC, Rocha M (2010) OptFlux: an open-source software platform for in silico metabolic engineering. BMC Syst Biol 4:45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sakai H, Shin Lee S, Tanaka T, Numa H, Kim J, Kawahara Y, Wakimoto H, Yang C, Iwamoto M, Abe T, Yamada Y, Muto A, Inokuchi H, Ikemura T, Matsumoto T, Sasak T, Itoh T (2012) Rice Annotation Project Database (RAP-DB): an integrative and interactive database for rice genomics. Plant Cell Physiol 54:1–11

    Google Scholar 

  • Salekdeh G, Siopongco J, Wade LJ, Ghareyazie B, Bennett J et al (2002) Proteomic analysis of rice leaves during drought stress and recovery. Proteomics 2:1131–1145

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Antonio BA, Namiki N, Takehisa H, Minami H, Kamatsuki K, Sugimoto K, Shimizu Y, Hirochika H, Nagamura Y (2010) RiceXPro: a platform for monitoring gene expression in japonica rice grown under natural field conditions. Nucleic Acids Res 39:D1141–D1148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schellenberger J, Que R, Fleming RM, Thiele I, Orth JD, Feist AM, Zielinski DC, Bordbar A, Lewis NE, Rahmanian S et al (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2. 0. Nat Protoc 6:1290–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shingaki-Wells RN, Huang S, Taylor NL, Carroll AJ, ZhouW,Millar AH (2011) Differential molecular responses of rice and wheat coleoptiles to anoxia reveal novel metabolic adaptations in amino acid metabolism for tissue tolerance. Plant Physiol 156:1706–1724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sroka J, Bieniasz-Krzywiec L, Gwozdz S, Leniowski D, LÄ…cki J, Markowski M, Avignone-Rossa C, Bushell ME, McFadden J, Kierzek AM (2011) Acorn: A grid computing system for constraint based modeling and visualization of the genome scale metabolic reaction networks via a web interface. BMC Bioinform 12:196

    Article  Google Scholar 

  • Steuer R, Gross T, Selbig J, Blasius B (2006) Structural kinetic modeling of metabolic networks. Proc Natl Acad Sci 103:11868–11873

    Article  CAS  Google Scholar 

  • Takahashi H, Saika H, Matsumura H, Nagamura Y, Tsutsumi N, Nishizawa NK, Nakazono M (2011) Cell division and cell elongation in the coleoptile of rice alcohol dehydrogenase 1-deficient mutant are reduced under complete submergence. Ann Bot 108:253–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tello-Ruiz MK, Stein J, Wei S, Preece J, Olson A, Naithani S (2016) Gramene 2016: comparative plant genomics and pathway resources. Nucleic Acids Res 44:1133–1140

    Article  CAS  Google Scholar 

  • The Arabidopsis Initiative A (2000) Analysis of the genome sequence of the owering plant Arabidopsis thaliana. Nature 408:796–815

    Google Scholar 

  • Ueda A, Kathiresan A, Bennett J, Takabe T (2006) Comparative transcriptome analyses of barley and rice under salt stress. Theor Appl Genet 112:1286–1294

    Article  CAS  PubMed  Google Scholar 

  • Urbanczik R (2006) SNA-a toolbox for the stoichiometric analysis of metabolic networks. BMC Bioinform 7:129

    Article  CAS  Google Scholar 

  • Walia H, Wilson C, Condamine P, Liu X, Ismail AM, Zeng L, Wanamaker SI, Mandal J, Xu J, Cui X et al (2005) Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage. Plant Physiol 139:822–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Zhang H, Gao F, Li J, Li Z (2007) Comparison of gene expression between upland and lowland rice cultivars under water stress using cDNA microarray. Theor Appl Genet 115:1109–1126

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Schauer N, Usadel B, Frasse P, Zouine M, Hernould M (2009) Regulatory features underlying pollination-dependent and -independent tomato fruit set revealed by transcript and primary metabolite profiling. Plant Cell 21:1428–1452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright J, Wagner A (2008) The systems biology research tool: evolvable open-source software. BMC Syst Biol 2:55

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yan S, Tang Z, Su W, Sun W (2005) Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics 5:235–244

    Article  CAS  PubMed  Google Scholar 

  • Yilmaz A, Nishiyama MY, Fuentes BG, Souza GM, Janies D, Gray J, Grotewold E (2009) GRASSIUS: a platform for comparative regulatory genomics across the grasses. Plant Physiol 149:171–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao W, Wang J, He X, Huang X, Jiao Y, Dai M, Wei S, Fu J, Chen Y, Ren X, Zhang Y, Ni P, Zhang J, Li S, Wang J, Wong G, Zhao H, Yu J, Yang H, Wang J (2003) BGI-RIS: an integrated information resource and comparative analysis workbench for rice genomics. Nucleic Acids Res 32:D377–D382

    Article  CAS  Google Scholar 

  • Zhou J, Wang X, Jiao Y, Qin Y, Liu X, He K, Chen C, Ma L, Wang J, Xiong L et al (2007) Global genome expression analysis of rice in response to drought and high salinity stresses in shoot, flag leaf, and panicle. Plant Mol Biol 63:591–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuther E, Koehl K, Kopka J (2007) In Comparative metabolome analysis of the salt response in breeding cultivars of rice. Springer, pp 285–315

    Google Scholar 

Download references

Acknowledgements

The author Pandiyan Muthuramalingam (Rc.SO (P)/DBT-BIF/15207/2017 dated February 02, 2018) thanks the DBT-Bioinformatics Infrastructure Facility Scheme, New Delhi, India, for the financial support in the form of fellowship. The authors gratefully acknowledge the use of the Bioinformatics Infrastructure Facility, Alagappa University, funded by the Department of Biotechnology, Ministry of Science and Technology, Government of India grant (No.BT/BI/25/015/2012). The authors also thank RUSA 2.0 [F. 24-51/2014-U, Policy (TN Multi-Gen), Dept of Edn, GoI].

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Muthuramalingam, P., Jeyasri, R., Krishnan, S.R., Pandian, S.T.K., Sathishkumar, R., Ramesh, M. (2019). Integrating the Bioinformatics and Omics Tools for Systems Analysis of Abiotic Stress Tolerance in Oryza sativa (L.). In: Sathishkumar, R., Kumar, S., Hema, J., Baskar, V. (eds) Advances in Plant Transgenics: Methods and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-13-9624-3_3

Download citation

Publish with us

Policies and ethics