Skip to main content

Oscillations Under Hysteretic Conditions: From Simple Oscillator to Discrete Sine-Gordon Model

  • Conference paper
  • First Online:
Topics in Nonlinear Mechanics and Physics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 228))

Abstract

In this paper we study the resonance properties of oscillating system in the case when the energy pumping is made by external source of hysteretic nature. We investigate the unbounded solutions of autonomous oscillating system with hysteretic block with a negative spin. The influence of a hysteretic block on an oscillator in the presence of Coulomb and viscous friction is also investigated. Namely, we establish the appearance of self-oscillating regimes for both kinds of friction. A separate part of this work is devoted to synchronization of periodic self-oscillations by a harmonic external force. Using the small parameter approach it is shown that the width of “trapping” band depends on the intensity (amplitude) of the external impact. Also in this work we introduce the novel class of hysteretic operators with random parameters. We consider the definition of these operators in terms of the “input-output” relations, namely: for all permissible continuous inputs corresponds the output in the form of stochastic Markovian process. The properties of such operators are also considered and discussed on the example of a non-ideal relay with random parameters. Application of hysteretic operator with stochastic parameters is demonstrated on the example of simple oscillating system and the results of numerical simulations are presented. We consider also a nonlinear dynamical system which is a set of nonlinear oscillators coupled by springs with hysteretic blocks (modified sine-Gordon system or hysteretic sine-Gordon model where the hysteretic nonlinearity is simulated by the Bouc-Wen model). We investigate the wave processes (namely, the solitonic solutions) in such a system taking into account the hysteretic nonlinearity in the coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Bouc, Modèle mathématique d’hystérésis: application aux systèmes à un degré de liberté. Acustica 24, 16–25 (1971)

    MATH  Google Scholar 

  2. A.E. Charalampakis, The response and dissipated energy of Bouc-Wen hysteretic model revisited. Arch. Appl. Mech. 85(9), 1209–1223 (2015)

    Article  ADS  Google Scholar 

  3. H. Haken, Quantum Field Theory of Solids: An Introduction (North-Holland, 1976)

    Google Scholar 

  4. V. Hassani, T. Tjahjowidodo, T. Nho Do, A survey on hysteresis modeling, identification and control. Mech. Syst. Signal Process. 49(1–2), 209–233 (2014). https://doi.org/10.1016/j.ymssp.2014.04.012

    Article  ADS  Google Scholar 

  5. F. Ikhouane, J.E. Hurtado, J. Rodellar, Variation of the hysteresis loop with the Bouc-Wen model parameters. Nonlinear Dyn. 48(4), 361–380 (2007)

    Article  MathSciNet  Google Scholar 

  6. F. Ikhouane, V. Mañosa, J. Rodellar, Dynamic properties of the hysteretic Bouc-Wen model. Syst. Control. Lett. 56(3), 197–205 (2007)

    Article  MathSciNet  Google Scholar 

  7. F. Ikhouane, J. Rodellar, On the hysteretic Bouc-Wen model. Nonlinear Dyn. 42(1), 63–78 (2005)

    Article  Google Scholar 

  8. A. Krasnosel’skii, A. Pokrovskii, Dissipativity of a nonresonant pendulum with ferromagnetic friction. Autom. Remote. Control. 67, 221–232 (2006)

    Article  MathSciNet  Google Scholar 

  9. M.A. Krasnosel’skii, A.V. Pokrovskii, Systems with Hysteresis (Springer, Berlin, 1989)

    Book  Google Scholar 

  10. L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics, vol. 1, Mechanics (Pergamon Press, 1960)

    Google Scholar 

  11. A.J. Lichtenberg, R. Livi, M. Pettini, S. Ruffo, Dynamics of Oscillator Chains (Springer, Berlin, 2007), pp. 21–121

    MATH  Google Scholar 

  12. P.A. Meleshenko, A.V. Tolkachev, M.E. Semenov, A.V. Perova, A.I. Barsukov, A.F. Klinskikh, Discrete hysteretic sine-Gordon model: soliton versus hysteresis, in MATEC Web of Conferences, vol. 241 (2018), p. 01027. https://doi.org/10.1051/matecconf/201824101027

    Article  Google Scholar 

  13. B. Øksendal, Stochastic Differential Equations. An Introduction with Applications (Springer, Berlin, 2003)

    MATH  Google Scholar 

  14. Y. Rochdi, F. Giri, F. Ikhouane, F.Z. Chaoui, J. Rodellar, Parametric identification of nonlinear hysteretic systems. Nonlinear Dyn. 58(1), 393–404 (2009). https://doi.org/10.1007/s11071-009-9487-y

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Scott, A nonlinear Klein-Gordon equation. Am. J. Phys. 37(1), 52–61 (1969)

    Article  ADS  Google Scholar 

  16. A.C. Scott, Active and Nonlinear Wave Propagation in Electronics (Wiley-Interscience, New-York, 1970)

    Google Scholar 

  17. A.C. Scott, Nonlinear Science. Emergence and Dynamics of Coherent Structures (Oxford University Press, 1999)

    Google Scholar 

  18. M.E. Semenov, P.A. Meleshenko, A.M. Solovyov, A.M. Semenov, Hysteretic Nonlinearity in Inverted Pendulum Problem (Springer International Publishing, 2015), pp. 463–506

    Google Scholar 

  19. M.E. Semenov, A.M. Solovyov, P.A. Meleshenko, Elastic inverted pendulum with backlash in suspension: stabilization problem. Nonlinear Dyn. 82(1), 677–688 (2015). https://doi.org/10.1007/s11071-015-2186-y

    Article  MathSciNet  Google Scholar 

  20. M.E. Semenov, A.M. Solovyov, M.A. Popov, P.A. Meleshenko, Coupled inverted pendulums: stabilization problem. Arch. Appl. Mech. 88(4), 517–524 (2018)

    Article  ADS  Google Scholar 

  21. M.E. Semenov, A.M. Solovyov, A.G. Rukavitsyn, V.A. Gorlov, P.A. Meleshenko, Hysteretic damper based on the Ishlinsky–Prandtl model, in MATEC Web of Conferences, vol. 83 (2016), p. 01008

    Article  Google Scholar 

  22. J. Sieber, T. Kalmár-Nagy, Stability of a chain of phase oscillators. Phys. Rev. E 84, 016227 (2011)

    Article  ADS  Google Scholar 

  23. A. Solovyov, M. Semenov, P. Meleshenko, A. Barsukov, Bouc-Wen model of hysteretic damping. Procedia Eng. 201, 549–555 (2017)

    Article  Google Scholar 

  24. A.M. Solovyov, M.E. Semenov, P.A. Meleshenko, O.O. Reshetova, M.A. Popov, E.G. Kabulova, Hysteretic nonlinearity and unbounded solutions in oscillating systems. Procedia Eng. 201, 578–583 (2017)

    Article  Google Scholar 

  25. A. Tolkachev, M. Semenov, P. Meleshenko, O. Reshetova, A. Klinskikh, E. Karpov, Sine-Gordon system with hysteretic links. J. Phys. Conf. Ser. 1096, 012072 (2018). https://doi.org/10.1088/1742-6596/1096/1/012072

    Article  Google Scholar 

  26. C.G. Torre, Foundations of Wave Phenomena (Utah State University, 2015)

    Google Scholar 

  27. D.I. Trubetskov, A.G. Rozhnev, Lineynyye kolebaniya i volny (Fizmatlit, Moscow, 2001). (in Russian)

    Google Scholar 

  28. J.Y. Tu, P.Y. Lin, T.Y. Cheng, Continuous hysteresis model using Duffing-like equation. Nonlinear Dyn. 80(1), 1039–1049 (2015). https://doi.org/10.1007/s11071-015-1926-3

    Article  MathSciNet  Google Scholar 

  29. Y.K. Wen, Method for random vibration of hysteretic systems. J. Eng. Mech. 102(2), 249–263 (1976)

    Google Scholar 

  30. V.G. Zadorozhniy, Linear chaotic resonance in vortex motion. Comput. Math. Math. Phys. 53(4), 486–502 (2013)

    Article  MathSciNet  Google Scholar 

  31. V.G. Zadorozhniy, S.S. Khrebtova, First moment functions of the solution to the heat equation with random coefficients. Comput. Math. Math. Phys. 49(11), 1853 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The works of authors (Introduction, Oscillator under hysteretic force and Oscillator under force with random parameters (Sects. 12.112.3)) was supported by the RFBR (Grants 17-01-00251-a, 18-08-00053-a, and 19-08-00158-a). The work of M.E. Semenov and P.A. Meleshenko (Hysteresis in discrete sine-Gordon model (Sect. 12.4)) was supported by the RSF grant No. 19-11-0197.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail E. Semenov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Semenov, M.E., Reshetova, O.O., Tolkachev, A.V., Solovyov, A.M., Meleshenko, P.A. (2019). Oscillations Under Hysteretic Conditions: From Simple Oscillator to Discrete Sine-Gordon Model. In: Belhaq, M. (eds) Topics in Nonlinear Mechanics and Physics. Springer Proceedings in Physics, vol 228. Springer, Singapore. https://doi.org/10.1007/978-981-13-9463-8_12

Download citation

Publish with us

Policies and ethics