Skip to main content

Morphology and Evaluation of Renal Fibrosis

  • Chapter
  • First Online:
Renal Fibrosis: Mechanisms and Therapies

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1165))

Abstract

With continuing damage, both the indigenous cells of the cortex and medulla, and inflammatory cells are involved in the formation and development of renal fibrosis. Furthermore, interactions among the glomerular, tubular, and interstitial cells contribute to the process by excessive synthesis and decreased degradation of extracellular matrix. The morphology of kidney is different from pathological stages of diseases and changes with various causes. At the end stage of the disease, the kidneys are symmetrically contracted with diffuse granules. Most glomeruli show diffuse fibrosis and hyaline degeneration, and intervening tubules become atrophied. Renal interstitium shows obvious hyperplasia of fibrous tissues with marked infiltration of lymphocytes, mononuclear cells, and plasma cells. The renal arterioles are wall thickening frequently because of hyaline degeneration. Morphologic analysis based on Masson staining of the kidney tissues has been regarded as the golden standard to evaluate the visual fibrosis. However, the present studies have found that the evaluation system has poor repeatability. Several computer-aided image analysis techniques have been used to assess interstitial fibrosis. It is possible that the evaluation of renal fibrosis is carried out by the artificial intelligence renal biopsy pathological diagnosis system in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anders HJ, Ryu M (2011) Renal microenvironments and macrophage phenotypes determine progression or resolution of renal inflammation and fibrosis. Kidney Int 80:915–925

    Article  CAS  Google Scholar 

  • Bob FR, Gluhovschi G, Herman D, Potencz E, Gluhovschi C, Trandafirescu V et al (2008) Histological, immunohistochemical and biological data in assessing interstitial fibrosis in patients with chronic glomerulonephritis. Acta Histochem 110:196–203

    Article  Google Scholar 

  • Campbell MT, Hile KL, Zhang H, Asanuma H, Vanderbrink BA, Rink RR et al (2011) Toll-like receptor 4: a novel signaling pathway during renal fibrogenesis. J Surg Res 168:e61–e69

    Article  CAS  Google Scholar 

  • Chen P (2017) Pathology, 2nd edn. Southeast University Publisher Co., Nanjing

    Google Scholar 

  • Chen T, Li X, Li Y, Xia E, Qin Y, Liang S et al (2019) Prediction and risk stratification of kidney outcomes in IgA nephropathy. Am J Kidney Dis pii S0272–6386(19):30618–3

    Google Scholar 

  • Coudray N, Ocampo PS, Sakellaropoulos T, Narula N, Snuderl M, Fenyö D et al (2018) Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat Med 24:1559–1567

    Article  CAS  Google Scholar 

  • Dussaule JC, Guerrot D, Huby AC, Chadjichristos C, Shweke N, Boffa JJ et al (2011) The role of cell plasticity in progression and reversal of renal fibrosis. Int J Exp Pathol 92:151–157

    Article  CAS  Google Scholar 

  • Eardley KS, Zehnder D, Quinkler M, Lepenies L, Bates RL, Savage CO et al (2006) The relationship between albuminuria, MCP-1/CCL2, and interstitial macrophages in chronic kidney disease. Kidney Int 69:1189–1197

    Article  CAS  Google Scholar 

  • Farris AB, Colvin RB (2012) Renal interstitial fibrosis: mechanisms and evaluation. Curr Opin Nephrol Hypertens 21:289–300

    Article  Google Scholar 

  • Haj-Hassan H, Chaddad A, Harkouss Y, Desrosiers C, Toews M, Tanougast C (2017) Classifications of multispectral colorectal cancer tissues using convolution neural network. J Pathol Inform 8:1–7

    Article  Google Scholar 

  • Hakroush S, Moeller MJ, Theilig F, Kaissling B, Sijmonsma TP, Jugold M et al (2009) Effects of increased renal tubular vascular endothelial growth factor (VEGF) on fibrosis, cyst formation, and glomerular disease. Am J Pathol 175:1883–1895

    Article  CAS  Google Scholar 

  • Higgins DF, Kimura K, Iwano M, Haase VH (2008) Hypoxia-inducible factor signaling in the development of tissue fibrosis. Cell Cycle 7:1128–1132

    Article  CAS  Google Scholar 

  • Hueso M, Vellido A, Montero N, Barbieri C, Ramos R, Angoso M et al (2018) Artificial tntelligence for the artificial kidney: pointers to the future of a personalized hemodialysis therapy. Kidney Dis 4:1–9

    Article  Google Scholar 

  • Kaissling B, Le Hir M (2008) The renal cortical interstitium: morphological and functional aspects. Histochem Cell Biol 130:247–262

    Article  CAS  Google Scholar 

  • Kim DH, Moon SO, Jung YJ, Lee AS, Kang KP, Lee TH et al (2009) Mast cells decrease renal fibrosis in unilateral ureteral obstruction. Kidney Int 75:1031–1038

    Article  CAS  Google Scholar 

  • Kimura K, Iwano M, Higgins DF, Yamaguchi Y, Nakatani K, Harada K et al (2008) Stable expression of HIF-1alpha in tubular epithelial cells promotes interstitial fibrosis. Am J Physiol Renal Physiol 295:F1023–F1029

    Article  CAS  Google Scholar 

  • Lecun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436

    Article  CAS  Google Scholar 

  • Lian YG, Zhou QG, Zhang YJ, Zheng FL (2011) VEGF ameliorates tubulointerstitial fibrosis in unilateral ureteral obstruction mice via inhibition of epithelialmesenchymal transition. Acta Pharmacol Sin 32:1513–1521

    Article  CAS  Google Scholar 

  • Lin SL, Kisseleva T, Brenner DA, Duffield JS (2008) Pericytes and perivascular fibroblasts are the primary source of collagenproducing cells in obstructive fibrosis of the kidney. Am J Pathol 173:1617–1627

    Article  CAS  Google Scholar 

  • Meran S, Steadman R (2011) Fibroblasts and myofibroblasts in renal fibrosis. Int J Exp Pathol 92:158–167

    Article  CAS  Google Scholar 

  • Miller DD, Brown EW (2018) Artificial intelligence in medical practice: the question to the answer? Am J Med 131:129–133

    Article  Google Scholar 

  • Nikolic-Paterson DJ (2010) CD4+ T cells: A potential player in renal fibrosis. Kidney Int 78:333–335

    Article  Google Scholar 

  • Norman J (2011) Fibrosis and progression of Autosomal Dominant Polycystic Kidney Disease (ADPKD). Biochim Biophys Acta 1812:1327–1336

    Article  CAS  Google Scholar 

  • Olsen TG, Jackson BH, Feeser TA, Kent MN, Moad JC, Krishnamurthy S et al (2018) Diagnostic performance of deep learning algorithms applied to three common diagnoses in dermatopathology. J Pathol Inform 9:32

    Article  Google Scholar 

  • Piera-Velazquez S, Li Z, Jimenez SA (2011) Role of endothelial-mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders. Am J Pathol 179:1074–1080

    Article  CAS  Google Scholar 

  • Qaiser T, Mukherjee A, Reddy PC, Munugoti SD, Tallam V, Pitkäaho T et al (2017) Her2 challenge contest: a detailed assessment of automated Her2 scoring algorithms in whole slide images of breast cancer tissues. Histopathol 72:227

    Article  Google Scholar 

  • Robertsa ISD, Furness PN, Cook HT (2004) Beyond diagnosis: stage and grade in inflammatory renal disease. Current Diagnostic Pathology 10:22–35

    Article  Google Scholar 

  • Rosenberg AZ, Palmer M, Merlino L, Troost JP, Gasim A, Bagnasco S et al (2016) The Application of digital pathology to improve accuracy in glomerular enumeration in renal biopsies. PLoS ONE 11:e0156441

    Article  Google Scholar 

  • Rubin R, Strayer DS (2012) Rubin’s pathology: clinicopathologic foundations of medicine, 6th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Russell S (2017) Artificial intelligence: The future is superintelligent. Nature 548:520–521

    Article  CAS  Google Scholar 

  • Sakai N, Furuichi K, Shinozaki Y, Yamauchi H, Toyama T, Kitajima S et al (2010) Fibrocytes are involved in the pathogenesis of human chronic kidney disease. Human Pathol 41:672–678

    Article  CAS  Google Scholar 

  • Satirapoj B, Nast CC, Adler SG (2012) Novel insights into the relationship between glomerular pathology and progressive kidney disease. Adv Chronic Kidney Dis 19:93–100

    Article  Google Scholar 

  • Savala R, Dey P, Gupta N (2018) Artificial neural network model to distinguish follicular adenoma from follicular carcinoma on fine needle aspiration of thyroid. Diagn Cytopathol 46:244–249

    Article  Google Scholar 

  • Scolari F, Ravani P (2010) Atheroembolic renal disease. Lancet 375:1650–1660

    Article  Google Scholar 

  • Snelgrove SL, Kausman JY, Lo C, Lo C, Ooi JD, Coates PT et al (2012) Renal dendritic cells adopt a proinflammatory phenotype in obstructive uropathy to activate T cells, but do not directly contribute to fibrosis. Am J Pathol 180:91–103

    Article  CAS  Google Scholar 

  • Stuht S, Gwinner W, Franz I, Schwarz A, Jonigk D, Kreipe H et al (2007) Lymphatic neoangiogenesis in human renal allografts: results from sequential protocol biopsies. Am J Transplant 7:377–384

    Article  CAS  Google Scholar 

  • Sun G, Reddy MA, Yuan H, Lanting L, Kato M, Natarajan R (2010) Epigenetic histone methylation modulates fibrotic gene expression. J Am Soc Nephrol 21:2069–2080

    Article  CAS  Google Scholar 

  • Tizhoosh HR, Pantanowitz L (2018) Artificial intelligence and digital pathology: challenges and opportunities. J Pathol Inform 9:38

    Article  Google Scholar 

  • Vernon MA, Mylonas KJ, Hughes J (2010) Macrophages and renal fibrosis. Semin Nephrol 30:302–317

    Article  CAS  Google Scholar 

  • Wada T, Sakai N, Sakai Y, Matsushima K, Kaneko S, Furuichi K (2011) Involvement of bone-marrow-derived cells in kidney fibrosis. Clin Exp Nephrol 15:8–13

    Article  Google Scholar 

  • Yamaguchi Y, Kanetsuna Y, Honda K, Yamanaka N, Kawano M, Nagata M (2012) Japanese study group on IgG4-related nephropathy: Characteristic tubulointerstitial nephritis in IgG4-related disease. Hum Pathol 43:536–549

    Article  Google Scholar 

  • Yan W, Tang Y, Chang EI-C, Lai M, Xu Y (2018) Deep learning in digital pathology analysis. Chin J Biomed Eng 37:95–105

    Google Scholar 

  • Yang XY, Du GH (2004) Microvolume assay method of hydroxyproline in animal tissues and application. Chin Pharmacol Bull 20:836–837

    CAS  Google Scholar 

  • Yang L, Besschetnova TY, Brooks CR, Shah JV, Bonventre JV (2010) Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat Med 6:535–543

    Article  Google Scholar 

  • Yoshida H, Shimazu T, Kiyuna T, Marugame A, Yamashita Y, Cosatto E et al (2017) Automated histological classification of whole-slide images of gastric biopsy specimens. Gastric Cancer 8:1–9

    Google Scholar 

  • Yu G, Wei P, Chen Y, Zhu M (2017) Artificial Intelligence in pathological diagnosis and assessment of human solid tumor: application and thinking. Acad J Sec Mil Med Univ 38:1349–1354

    Google Scholar 

  • Zee J, Hodgin JB, Mariani LH, Gaut JP, Palmer MB, Bagnasco SM et al (2018) Reproducibility and feasibility of strategies for morphologic assessment of renal biopsies using the nephrotic syndrome study network digital pathology scoring system. Arch Pathol Lab Med 142:613–625

    Article  Google Scholar 

  • Zhou W (2013) Real biopsy pathology, 3rd edn. Peiking University Publisher Co., Beijing

    Google Scholar 

  • Zhou LT, Qiu S, Lv LL, Li ZL, Liu H, Tang RN et al (2018) Integrative bioinformatics analysis provides insight into the molecular mechanisms of chronic kidney disease. Kidney Blood Press Res 43:568–581

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping-Sheng Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, PS., Li, YP., Ni, HF. (2019). Morphology and Evaluation of Renal Fibrosis. In: Liu, BC., Lan, HY., Lv, LL. (eds) Renal Fibrosis: Mechanisms and Therapies. Advances in Experimental Medicine and Biology, vol 1165. Springer, Singapore. https://doi.org/10.1007/978-981-13-8871-2_2

Download citation

Publish with us

Policies and ethics