Skip to main content

Aptamer: The Science of Synthetic DNA

  • Chapter
  • First Online:
Aptamers

Abstract

Aptamers are synthetic molecules (DNA/RNA) and have shown immense potential in the field of diagnostics and therapeutics. They are easy to produce and their manufacturing cost is very low, further they can be selected against toxic molecules which otherwise be not possible with antibodies. Synthetic aptamers have shown selectivity and sensitivity which is comparable to monoclonal antibodies. Tuerk and Gold used an iterative method also known as Systematic Evolution of Ligand by Exponential Enrichment (SELEX) for selection of an aptamer against bacteriophage T4 DNA polymerase. Since then many more aptamers are selected through SELEX that are specific to wide variety of molecules. Initial version of SELEX was time consuming and difficult to perform. To make process fast and more reliable advance version of SELEX has been developed. Till date only two aptamers have commercialized, Macugen (RNA aptamer) for treatment of macular degeneration and aptamer based bioassay for detection of Ochratoxins. The development in nanotechnology and immobilization techniques for aptamer tagging on different format of diagnostic techniques has made fast and sensitive detection method development. However despite of its advantages constrains such as nuclease sensitivity and less efficient working in vivo condition needs to be addressed so that aptamers can be used as an alternate to monoclonal antibody in near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhikari M, Strych U, Kim J, Goux H, Dhamane S, Poongavanam MV, Hagström AE, Kourentzi K, Conrad JC, Willson RC (2015) Aptamer-phage reporters for ultrasensitive lateral flow assays. Anal Chem 87(23):11660–11665

    Article  CAS  Google Scholar 

  • Baker BR, Lai RY, Wood MS, Doctor EH, Heeger AJ, Plaxco KW (2006) An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids. J Am Chem Soc 128(10):3138–3139

    Article  CAS  Google Scholar 

  • Bruno JG (2014) Application of DNA aptamers and quantum dots to lateral flow test strips for detection of foodborne pathogens with improved sensitivity versus colloidal gold. Pathogens 3(2):341–355

    Article  CAS  Google Scholar 

  • Cheng AK, Ge B, Yu HZ (2007) Aptamer-based biosensors for label-free voltammetric detection of lysozyme. Anal Chem 79(14):5158–5164

    Article  CAS  Google Scholar 

  • Daniels DA, Chen H, Hicke BJ, Swiderek KM, Gold L (2003) A tenascin-C aptamer identified by tumor cell SELEX: systematic evolution of ligands by exponential enrichment. Proc Natl Acad Sci 100(26):15416–15421

    Article  CAS  Google Scholar 

  • DeLong RK, Reynolds CM, Malcolm Y, Schaeffer A, Severs T, Wanekaya A (2010) Functionalized gold nanoparticles for the binding, stabilization, and delivery of therapeutic DNA, RNA, and other biological macromolecules. Nanotechnol Sci Appl 3:53–63

    Article  CAS  Google Scholar 

  • Dirkzwager RM, Kinghorn AB, Richards JS, Tanner JA (2015) APTEC: aptamer-tethered enzyme capture as a novel rapid diagnostic test for malaria. Chem Commun 51(22):4697–4700

    Article  CAS  Google Scholar 

  • Du Y, Li B, Wang E (2010) Analytical potential of gold nanoparticles in functional aptamer-based biosensors. Bioanal Rev 1(2–4):187–208

    Article  Google Scholar 

  • Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822

    Article  CAS  Google Scholar 

  • Fraser LA, Kinghorn AB, Dirkzwager RM, Liang S, Cheung YW, Lim B, Shiu SCC, Tang MS, Andrew D, Manitta J, Richards JS (2018) A portable microfluidic aptamer-tethered enzyme capture (APTEC) biosensor for malaria diagnosis. Biosens Bioelectron 100:591–596

    Article  CAS  Google Scholar 

  • Golden MC, Collins BD, Willis MC, Koch TH (2000) Diagnostic potential of PhotoSELEX-evolved ssDNAaptamers. J Biotechnol 81(2–3):167–178

    Article  CAS  Google Scholar 

  • Guthrie JW, Hamula CL, Zhang H, Le XC (2006) Assays for cytokines using aptamers. Methods 38(4):324–330

    Article  CAS  Google Scholar 

  • Hicke BJ, Marion C, Chang YF, Gould T, Lynott CK, Parma D, Schmidt PG, Warren S (2001) Tenascin-C aptamers are generated using tumor cells and purified protein. J Biol Chem 276(52):48644–48654

    Article  CAS  Google Scholar 

  • Huang CC, Huang YF, Cao Z, Tan W, Chang HT (2005) Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors. Anal Chem 77(17):5735–5741

    Article  CAS  Google Scholar 

  • Jauset-Rubio M, Svobodová M, Mairal T, McNeil C, Keegan N, El-Shahawi MS, Bashammakh AS, Alyoubi AO, O’Sullivan CK (2016) Aptamer lateral flow assays for ultrasensitive detection of β-conglutin combining recombinase polymerase amplification and tailed primers. Anal Chem 88(21):10701–10709

    Article  CAS  Google Scholar 

  • Jauset-Rubio M, El-Shahawi MS, Bashammakh AS, Alyoubi AO, O’Sullivan CK (2017) Advances in aptamers-based lateral flow assays. TrAC Trends Anal Chem 97:385–398

    Article  CAS  Google Scholar 

  • Kim EY, Kim JW, Kim WK, Han BS, Park SG, Chung BH, Lee SC, Bae KH (2014) Selection of aptamers for mature white adipocytes by cell SELEX using flow cytometry. PLoS One 9(5):e97747

    Article  Google Scholar 

  • Kuang H, Chen W, Xu D, Xu L, Zhu Y, Liu L, Chu H, Peng C, Xu C, Zhu S (2010) Fabricated aptamer-based electrochemical “signal-off” sensor of ochratoxin A. Biosens Bioelectron 26(2):710–716

    Article  CAS  Google Scholar 

  • Malhotra S, Pandey AK, Rajput YS, Sharma R (2014) Selection of aptamers for aflatoxin M1 and their characterization. J Mol Recognit 27(8):493–500

    Article  CAS  Google Scholar 

  • Mendonsa SD, Bowser MT (2004) In vitro evolution of functional DNA using capillary electrophoresis. J Am Chem Soc 126(1):20–21

    Article  CAS  Google Scholar 

  • Mi J, Ray P, Liu J, Kuan CT, Xu J, Hsu D, Sullenger BA, White RR, Clary BM (2016) In vivo selection against human colorectal cancer xenografts identifies an aptamer that targets RNA helicase protein DHX9. Mol Ther Nucleic Acids 5:315

    Article  Google Scholar 

  • Ng EW, Shima DT, Calias P, Cunningham ET Jr, Guyer DR, Adamis AP (2006) Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov 5(2):123–132

    Article  CAS  Google Scholar 

  • Nimjee SM, Oney S, Volovyk Z, Bompiani KM, Long SB, Hoffman M, Sullenger BA (2009) Synergistic effect of aptamers that inhibit exosites 1 and 2 on thrombin. RNA 15(12):2105–2111

    Article  CAS  Google Scholar 

  • Parashar A, Rajput YS, Sharma R (2015) Aptamer-based sensing of β-casomorphin-7. J Agric Food Chem 63(10):2647–2653

    Article  CAS  Google Scholar 

  • Ramos E, Piñeiro D, Soto M, Abanades DR, Martín ME, Salinas M, González VM (2007) A DNA aptamer population specifically detects Leishmaniainfantum H2A antigen. Lab Investig 87(5):409–416

    Article  CAS  Google Scholar 

  • Raston NHA, Nguyen VT, Gu MB (2017) A new lateral flow strip assay (LFSA) using a pair of aptamers for the detection of vaspin. Biosens Bioelectron 93:21–25

    Article  Google Scholar 

  • Reverdatto S, Burz DS, Shekhtman A (2015) Peptide aptamers: development and applications. Curr Top Med Chem 15(12):1082–1101

    Article  CAS  Google Scholar 

  • Rhouati A, Yang C, Hayat A, Marty JL (2013) Aptamers: a promising tool for ochratoxin a detection in food analysis. Toxins 5(11):1988–2008

    Article  CAS  Google Scholar 

  • Shim WB, Kim MJ, Mun H, Kim MG (2014) An aptamer-based dipstick assay for the rapid and simple detection of aflatoxin B1. Biosens Bioelectron 62:288–294

    Article  CAS  Google Scholar 

  • Stoltenburg R, Reinemann C, Strehlitz B (2005) FluMag-SELEX as an advantageous method for DNA aptamer selection. Anal Bioanal Chem 383(1):83–91

    Article  CAS  Google Scholar 

  • Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510

    Article  CAS  Google Scholar 

  • Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75

    Article  Google Scholar 

  • Wang J, Munir A, Li Z, Zhou HS (2010) Aptamer-Au NPs conjugates-accumulated methylene blue for the sensitive electrochemical immunoassay of protein. Talanta 81(1–2):63–67

    Article  CAS  Google Scholar 

  • Wang L, Ma W, Chen W, Liu L, Ma W, Zhu Y, Xu L, Kuang H, Xu C (2011) An aptamer-based chromatographic strip assay for sensitive toxin semi-quantitative detection. Biosens Bioelectron 26(6):3059–3062

    Article  CAS  Google Scholar 

  • Wong RC, Harley YT (2009) Quantitative, false positive, and false negative issues for lateral flow immunoassays as exemplified by onsite drug screens. In: Lateral flow immunoassay. Humana Press, Totowa, pp 1–19

    Chapter  Google Scholar 

  • Wu S, Liu L, Duan N, Li Q, Zhou Y, Wang Z (2018) Aptamer-based lateral flow test strip for rapid detection of zearalenone in corn samples. J Agric Food Chem 66(8):1949–1954

    Article  CAS  Google Scholar 

  • Zhang G, Zhu C, Huang Y, Yan J, Chen A (2018) A lateral flow strip based aptasensor for detection of ochratoxin A in corn samples. Molecules 23(2):291

    Article  CAS  Google Scholar 

  • Zhao W, Chiuman W, Lam JC, McManus SA, Chen W, Cui Y, Pelton R, Brook MA, Li Y (2008) DNA aptamer folding on gold nanoparticles: from colloid chemistry to biosensors. J Am Chem Soc 130(11):3610–3618

    Article  CAS  Google Scholar 

  • Zheng J, Feng W, Lin L, Zhang F, Cheng G, He P, Fang Y (2007) A new amplification strategy for ultrasensitive electrochemical aptasensor with network-like thiocyanuric acid/gold nanoparticles. Biosens Bioelectron 23(3):341–347

    Article  CAS  Google Scholar 

  • Zimmermann B, Bilusic I, Lorenz C, Schroeder R (2010) Genomic SELEX: a discovery tool for genomic aptamers. Methods 52(2):125–132

    Article  CAS  Google Scholar 

Download references

Acknowledgments

National Dairy Research Institute (NDRI), Karnal for proving laboratory and library support.

Conflict of Interest

There is no conflict of interest amongst the authors.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parashar, A., Yadav, M.L., Yadav, G.S., Saini, R.K. (2019). Aptamer: The Science of Synthetic DNA. In: Yadav, G., Kumar, V., Aggarwal, N. (eds) Aptamers. Springer, Singapore. https://doi.org/10.1007/978-981-13-8836-1_1

Download citation

Publish with us

Policies and ethics