Skip to main content

Mechanical Properties of Shape-Memory Polymers, Polymer Blends, and Composites

  • Chapter
  • First Online:
Shape Memory Polymers, Blends and Composites

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 115))

Abstract

Shape-memory polymers (SMPs) are widely employed in aerospace, biomedical, portable electronic devices, etc., where their multiple-shape capabilities are considered. In order to avoid the failure of the SMPs before shape change, it is critical to possess excellent mechanical properties along with their inherent shape-memory ability. Recent research reports highlight the importance of SMPs with high strength and toughness. Conventional mechanical testing procedures such as tensile, bending, and fracture toughness are used to outline the static mechanical performance of SMPs. The cyclic mechanical testing facilitates the evaluation of shape-memory parameters such as shape fixity (Rf) and shape recovery (Rr) ratio. In a recent development, nanoindentation technique is used to probe the shape-memory process at nanolevel. SMPs based on epoxy, polyurethane, PCL, etc., were investigated for their both static and cyclic mechanical performance. Well-balanced mechanical and shape-memory performance can be tailored in SMPs by careful tuning of crystallinity, cross-link density, and fiber/filler reinforcement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kagami Y, Gong JP, Osada Y (1996) Shape memory behaviors of crosslinked copolymers containing stearyl acrylate. Macromol Rapid Commun 17:539–543

    Article  Google Scholar 

  2. Kim BK, Lee SY, Xu M (1996) Polyurethanes having shape memory effects. Polymer 37:5781–5793

    Article  Google Scholar 

  3. Lendlein A, Langer R (2002) Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296:1673–1676

    Article  Google Scholar 

  4. Lendlein A, Jiang H, Jünger O, Langer R (2005) Light-induced shape-memory polymers. Nature 434:879–882

    Article  Google Scholar 

  5. Chen S, Hu J, Chen S (2012) Studies of the moisture-sensitive shape memory effect of pyridine-containing polyurethanes. Polym Int 61:314–320

    Article  Google Scholar 

  6. Han X-J, Dong Z-Q, Fan M-M, Liu Y, li J-H, Wang Y-F, Yuan Q-J, Li B-J, Zhang S (2012) pH-induced shape-memory polymers. Macromol Rapid Commun 33:1055–1060

    Article  Google Scholar 

  7. Ratna D, Karger-Kocsis J (2008) Recent advances in shape memory polymers and composites: a review. J Mater Sci 43:254–269

    Article  Google Scholar 

  8. Xu B, Fu YQ, Ahmad M, Luo JK, Huang WM, Kraft A, Reuben R, Pei YT, Chen ZG, De Hosson JThM (2010) Thermo-mechanical properties of polystyrene-based shape memory nanocomposites. J Mater Chem 20:3442–3448

    Article  Google Scholar 

  9. Abrahamson ER, Lake MS, Munshi NA, Gall K (2003) Shape memory mechanics of an elastic memory composite resin. J Intell Mater Syst Struct 14:623–632

    Article  Google Scholar 

  10. Sauter T, Heuchel M, Kratz K, Lendlein A (2013) Quantifying the shape-memory effect of polymers by cyclic thermomechanical tests. Polym Rev 53:6–40

    Article  Google Scholar 

  11. Cho J-W, Kim J-W, Jung Y-C, Goo N-S (2005) Electroactive shape-memory polyurethane composites incorporating carbon nanotubes. Macromol Rapid Commun 26:412–416

    Article  Google Scholar 

  12. Ni Q-Q, Zhang C-S, Fu Y, Dai GS, Kimura T (2007) Shape memory effect and mechanical properties of carbon nanotube/shape memory polymer nanocomposites. Compos Struct 81:176–184

    Article  Google Scholar 

  13. Cho J-W, Jung Y-C, Chung Y-C, Chun B-C (2004) Improved mechanical properties of shape-memory polyurethane block copolymers through the control of the soft-segment arrangement. J Appl Polym Sci 93:2410–2415

    Article  Google Scholar 

  14. Lützen H, Gesing TM, Kim B-K, Hartwig A (2012) Novel cationically polymerized epoxy/poly(ɛ-caprolactone) polymers showing a shape memory effect. Polymer 53:6089–6095

    Article  Google Scholar 

  15. Arnebold A, Hartwig A (2016) Fast switchable, epoxy based shape-memory polymers with high strength and toughness. Polymer 83:40–49

    Article  Google Scholar 

  16. Yang P, Zhu G, Shen X, Yan X, Nie J (2016) Poly(3-caprolactone)-based shape memory polymers crosslinked by polyhedral oligomeric silsesquioxane. RSC Adv 6:90212

    Article  Google Scholar 

  17. Kong D, Xiao X (2016) High cycle-life shape memory polymer at high temperature. Sci Rep 6:33610

    Article  Google Scholar 

  18. Lin L, Zhang L, Guo Y (2018) Mechanical properties and shape memory effect of thermal-responsive polymer based on PVA. Mater Res Express 5:015702

    Article  Google Scholar 

  19. Ohki T, Ni Q-Q, Iwamoto M (2004) Creep and cyclic mechanical properties of composites based on shape memory polymer. Sci Eng Compos Mater 11:137–148

    Article  Google Scholar 

  20. Auad ML, Contos VS, Nutt S, Aranguren MI, Marcovich NE (2008) Characterization of nanocellulose reinforced shape memory polyurethanes. Polym Int 57:651–659

    Article  Google Scholar 

  21. Liu R, Li Y, Liu Z (2018) Experimental study of thermo-mechanical behavior of a thermosetting shape-memory polymer. Mech Time Depend Mater. https://doi.org/10.1007/s11043-018-9377-0

  22. Leonardi AB, Fasce LA, Zucchi IA, Hoppe CE, Soule ER, Perez CJ, Williams RJJ (2011) Shape memory epoxies based on networks with chemical and physical crosslinks. Euro Polym J 47:362–369

    Article  Google Scholar 

  23. Di Prima MA, Gall K, McDowell DL, Guldberg R, Lin A, Sanderson T, Campbell D, Arzberger SC (2010) Cyclic compression behavior of epoxy shape memory polymer foam. Mech Mater 42:405–416

    Article  Google Scholar 

  24. Di Prima MA, Lesniewski M, Gall K, McDowell DL, Sanderson T, Campbell D (2007) Thermo-mechanical behavior of epoxy shape memory polymer foams. Smart Mater Struct 16:2330–2340

    Article  Google Scholar 

  25. Anderson KS, Hillmyer MA (2004) The influence of block copolymer microstructure on the toughness of compatibilized polylactide/polyethylene blends. Polymer 45:8809–8823

    Article  Google Scholar 

  26. Jaratrotkamjorn R, Khaokong C, Tanrattanakul V (2012) Toughness enhancement of poly(lactic acid) by melt blending with natural rubber. J Appl Polym Sci 124:5027–5036

    Google Scholar 

  27. Zhang W, Chen L, Zhang Y (2009) Surprising shape-memory effect of polylactide resulted from toughening by polyamide elastomer. Polymer 50:1311–1315

    Article  Google Scholar 

  28. Hearon K, Wierzbicki MA, Nash LD, Landsman TL, Laramy C, Lonnecker AT, Gibbons MC, Ur S, Cardinal KO, Wilson TS, Wooley KL, Maitland DJ (2015) A processable shape memory polymer system for biomedical applications. Adv Healthc Mater 4:1386–1398

    Article  Google Scholar 

  29. Safranski DL, Gall K (2008) Effect of chemical structure and crosslinking density on the thermo-mechanical properties and toughness of (meth)acrylate shape memory polymer networks. Polymer 49:4446–4455

    Article  Google Scholar 

  30. Yang F, Wornyo E, Gall K, King WP (2008) Thermomechanical formation and recovery of nanoindents in a shape memory polymer studied using a heated tip. Scanning 30:197–202

    Article  Google Scholar 

  31. Fulcher JT, Lu YC, Tandon GP, Foster DC (2010) Thermomechanical characterization of shape memory polymers using high temperature nanoindentation. Polym Test 29:544–552

    Article  Google Scholar 

  32. Wornyo E, Gall K, Yang F, King W (2007) Nanoindentation of shape memory polymer networks. Polymer 48:3213–3225

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Poornima Vijayan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Poornima Vijayan, P. (2020). Mechanical Properties of Shape-Memory Polymers, Polymer Blends, and Composites. In: Parameswaranpillai, J., Siengchin, S., George, J., Jose, S. (eds) Shape Memory Polymers, Blends and Composites. Advanced Structured Materials, vol 115. Springer, Singapore. https://doi.org/10.1007/978-981-13-8574-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8574-2_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8573-5

  • Online ISBN: 978-981-13-8574-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics