Skip to main content

Thermal Stability of Shape Memory Polymers, Polymer Blends, and Composites

  • Chapter
  • First Online:
Shape Memory Polymers, Blends and Composites

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 115))

Abstract

This chapter will focus on the thermal analysis and interesting related properties of high performance shape memory polymers (SMPs), shape memory polymer blends (SMPBs), and shape memory polymer composites (SMPCs) in different length scales. In general, thermal behaviors of shape memory materials are very relevant to the potential uses in many demanding applications. In order to develop durable industrial products, it is necessary to investigate the thermal stability of these polymers. The polybenzoxazine (PBZ)-based shape memory materials are mainly mentioned in this chapter due to the outstanding properties and high thermal stability of the novel phenolic polymers. This kind of thermoset can be alloyed with other polymers such as epoxy and polyurethane suitable to be used to produce SMPCs in high temperature applications with synergistic behaviors. Therefore, the PBZ/epoxy alloy-based systems and PBZ/polyurethane alloys-based systems are mentioned as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wei ZG, Sandstorm R, Miyazaki S (1998) Review Shape-memory materials and hybrid composites for smart systems: Part I Shape-memory materials. J Mater Sci 33:3743–3763

    Article  Google Scholar 

  2. Leng JS, Lan X, Du S (2011) Shape-memory polymers and their composites: Stimulus method and applications. Prog Polym Sci 56:10771135

    Google Scholar 

  3. Chatterjee T, Dey P, Nando GB, Naskar K (2015) Thermo-responsive shape memory polymer blends based on alpha olefin and ethylene propylene diene rubber. Polymer 78:180–192

    Article  Google Scholar 

  4. Zheng N, Fang G, Cao Z, Zhao Q, Xie T (2015) High strain epoxy shape memory polymer. Polym Chem 6:3046–3053

    Article  Google Scholar 

  5. Lendlein A, Jiang H, Junger O, Langer R (2005) Light-induced shape-memory polymers. Nature 434:879–882

    Article  Google Scholar 

  6. Chen S, Yang S, Li Z, Xu S, Yuan H, Chen S, Ge Z (2015) Electroactive two-way shape memory polymer laminates. Polym Compos 36:439–444

    Article  Google Scholar 

  7. Xiao R, Guo J, Safranski DL, Nguyen TD (2015) Solvent-driven temperature memory and multiple shape memory effects. Soft Matter 11:3977–3985

    Article  Google Scholar 

  8. Xu B, Li Y, Gao F, Zhai X, Sun M, Lu W, Cao Z, Liu W (2015) High strength multifunctional multiwalled hydrogel tubes: Ion-triggered shape memory, antibacterial, and anti-inflammatory efficacies. ACS Appl Mater Interfaces 7:16865–16872

    Article  Google Scholar 

  9. Buckley PR, McKinley GH, Wilson TS, Small W IV, Benett WJ, Bearinger J, McElfresh MW, Maitland DJ (2006) Inductively heated shape memory polymer for the magnetic actuation of medical device. IEEE Trans Biomed Eng 53:2075–2083

    Article  Google Scholar 

  10. Guo W, Lu CH, Orbach R, Wang F, Qi XJ, Cecconello A, Seliktar D, Willner I (2015) pH-Stimulated DNA hydrogels exhibiting shape-memory properties. Adv Mater 27:73–78

    Article  Google Scholar 

  11. Koeme H, Price G, Pearce N, Alexander M, Vaia RA (2004) Remotely actuated polymer nanocomposites—stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nat Mater 3:115–120

    Article  Google Scholar 

  12. Leng JS, Lv HB, Lui YJ, Du SY (2007) Electroactivate shape-memory polymer filled with nanocarbon particles and short carbon filler. Appl Phys Lett 91: art. no. 114105

    Article  Google Scholar 

  13. Lu H, Liu Y, Leng JS, Du S (2009) Qualitative separation of the effect of the solubility parameter on the recovery behavior of shape-memory polymer. Smart Mater Struct 18: art. no. 085003

    Article  Google Scholar 

  14. Mohr R, Kratz K, Weigel T, Lucka-Gabor M, Moneke M, Lendlein A (2006) Initiation of shape memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. Proc Natl Acad Sci 103:3540–3545

    Article  Google Scholar 

  15. Maitlan DJ, Metzger MF, Schumann D, Lee A, Wilson TS (2003) Photothermal properties of shape memory polymer micro-actuators for treating stroke. Laser Surg Med 30:1–11

    Article  Google Scholar 

  16. Ansari M, Golzar M, Baghani M, Soleimani M (2018) Shape memory characterization of poly(ε-caprolactone) (PCL)/polyurethane (PU) in combined torsion-tension loading with potential applications in cardiovascular stent. Polym Test 68:424–432

    Article  Google Scholar 

  17. Hu J, Zhu Y, Huang H, Lu J (2012) Recent advances in shape memory polymers: structure, mechanism functionality, modeling and applications. Prog Polym Sci 37:1720–1763

    Article  Google Scholar 

  18. Kumar B, Hu J, Pan N, Narayan H (2016) A smart orthopedic compression device based on a polymeric stress memory actuator. Mater Des 97:222–229

    Article  Google Scholar 

  19. Zhao Q, Qi HJ, Xie T (2015) Recent progress in shape memory polymer: new behavior, enabling materials, and mechanistic understanding. Prog Polym Sci 49–50:79–120

    Article  Google Scholar 

  20. Hu J, Chen W, Fan P, Gao J, Fang G, Cao Z, Peng F (2017) Uniaxial tensile tests and dynamic mechanical analysis of satin weave reinforced epoxy shape memory polymer composite. Polym Test 62:335–341

    Article  Google Scholar 

  21. Dhulst EA, Heath WH, Torkelson JM (2016) Hybrid thiol-acrylate-epoxy polymer networks: comparison of one-pot synthesis with sequential reactions and shape memory properties. Polymer 96:198–204

    Article  Google Scholar 

  22. Li Q, Zhou J, Vatankhah-Varnoosfaderani M, Nykypanchuk D, Gang O, Sheiko SS (2016) Advancing reversible shape memory by tuning the polymer network architecture. Macromolecules 49:1383–1391

    Article  Google Scholar 

  23. Wei ZG, Sandstrom R, Miyazaki S (1998) Shape memory materials and hybrid composites for smart systems: part II shape-memory hybrid composites. J Mater Sci 33:3763–3783

    Article  Google Scholar 

  24. Rousseau IA (2008) Challenges of shape memory polymers: a review of the progress toward overcoming SMP’s limitations. Polym Eng Sci 48:2075–2089

    Article  Google Scholar 

  25. Tiptipakorn S, Rimdusit S (2017) Shape memory polymers from polybenzoxazine-modified polymers. Advanced and emerging polybenzoxazine science and technology. In: Ishida H, Froimowicz P (ed), Elsevier, Cambridge, pp 1029–1049

    Google Scholar 

  26. Ehrenstein GW (2001) Polymeric materials-structure, properties, applications. Hanser Gardner Publications, Cincinnati, USA

    Book  Google Scholar 

  27. Lake MS, Campbell D (2004) The fundamentals of designing deployable structures with elastic memory composites. IEEE aerospace conference proceeding. Compos Tech Develop, 6–13 March 2004, 2745–2756, MT, USA

    Google Scholar 

  28. Cao F, Jana S (2007) Nanoclay-tethered shape memory polyurethane nanocomposites. Polymer 48:3790–3800

    Article  Google Scholar 

  29. Xu J, Shi W, Pang W (2006) Synthesis and shape memory effects of Si-O-Si cross-linked hybrid polyurethanes. Polymer 47:457–465

    Article  Google Scholar 

  30. Ohki T, Ni QQ, Ohsako N, Iwamoto M (2004) Mechanical and shape memory behavior of composites with shape memory polymer. Compos A 35:1065–1073

    Article  Google Scholar 

  31. Jeong HM, Kim BK, Choi YJ (2000) Synthesis and properties of thermotropic liquid crystalline polyurethane elastomers. Polymer 41:1849–1855

    Article  Google Scholar 

  32. Liu Y, Gall K, Dunn ML, McCluskey P (2004) Thermomechanics of shape memory polymer nanocomposites. Mech Mater 36:929–940

    Article  Google Scholar 

  33. Gall K, Dunn ML, Liu Y, Stefanie G, Balzar D (2004) Internal stress storage in shape memory polymer nanocomposites. Appl Phys Lett 85:290–292

    Article  Google Scholar 

  34. Li F, Qi L, Yang J, Xu M, Luo X, Ma D (2000) Polyurethane/conducting carbon black composites: structure, electric conductivity, strain recovery behavior, and their relationships. J Appl Polym Sci 75:68–77

    Article  Google Scholar 

  35. Zhang CS, Ni QQ (2007) Bending behavior of shape memory polymer based laminates. Compos Struct 78:153–161

    Article  Google Scholar 

  36. Liu C, Mather PT (2005) A. shape memory polymer with improved shape recovery. Mater Res Soc Symp Proc 855E, W4.7.1

    Google Scholar 

  37. Razzaq MY, Frrormann L (2007) Thermomechanical studies of aluminum nitride filled shape memory polymer composites. Polym Compos 28:287–293

    Article  Google Scholar 

  38. Guo J, Wang Z, Tong L, Lv H, Liang W (2015) Shape memory and thermos-mechanical properties of shape memory polymers/carbon fiber composites. Compos A 76:162–171

    Article  Google Scholar 

  39. Meng Q, Hu J (2009) A review of shape memory polymer composites and blends. Compos Part A 1661–1672

    Article  Google Scholar 

  40. Mu T, Liu L, Lan X, Liu Y, Leng J (2018) Shape memory polymers for composites. Compos Sci Tech 160:169–198

    Article  Google Scholar 

  41. Wang W, Liu Y, Leng J (2016) Recent developments in shape memory polymer nanocomposites: actuation methods and mechanisms. Coord Chem Rev 320–321:38–52

    Article  Google Scholar 

  42. Ray S, Cooney RP (2012) Chapter 7 thermal degradation of polymer and polymer composite. In: Kutz M Handbook of environmental degradation of materials, Waltham, USA, pp 212–242

    Google Scholar 

  43. Peterson JD, Vyazovkin S, Wight CA (2001) Kinetics of the thermal and thermos-oxidative degradation of polystyrene, polyethelene and poly(propylene). Macromol Chem Phys 202:775–784

    Article  Google Scholar 

  44. Hamid SH, Amin MB (1992) Handbook off polymer degradation. Marcel Dekker, New York

    Google Scholar 

  45. Tiptipakorn S, Damrongsakkul S, Ando S, Hemvichian K, Rimdusit S (2007) Thermal degradation behaviors of polybenzoxazine and silicon-containing polyimide blends. Polym Degrad Stab 92:1265–1278

    Article  Google Scholar 

  46. Shi S, Shen D, Xu T (2017) Programming effects on thermal decomposition of shape memory polymer-based composites. J Therm Anal Calorim 130:1953–1960

    Article  Google Scholar 

  47. Rousseau IA, Xie T (2010) Shape memory epoxy: Composition, structure, properties and shape memory performances. J Mater Chem 20:3431–3441

    Article  Google Scholar 

  48. Hu JL (2014) Shape memory polymers: fundamentals, advances and applications. Shawbury, Shrewsbury, Shropshire, SY4 4NR, United Kingdom: Smithers Rapra, pp 89–115

    Google Scholar 

  49. Liu G, Guan H, Xia H, Guo F, Ding X, Peng Y (2006) Novel shape-memory polymer based on hydrogen bonding. Macromol Rapid Commun 27:1100–1104

    Article  Google Scholar 

  50. Chun BC, Cha SH, Park C, Chung YC, Park MC, Chao JW (2003) Dynamic mechanical properties of sandwich-structured epoxy beam composites containing poly(ethyleneterephthalate)/poly(ethyleneglycol) copolymer with shape memory effect. J Appl Polym Sci 90:3141–3149

    Article  Google Scholar 

  51. Lendlein A, Schmidt AM, Langer R (2001) AB-polymer networks based on oligo(ɛ-caprolactone) segments showing shape-memory properties. Proc Natl Acad Sci USA 98: 842–847

    Google Scholar 

  52. Chowdhury SRM, Mishra JK, Das CK (2001) Study of heat shrinkability and flame retardancy of Poly(ethylene vinyl acetate)/Epichlorohydrin blends. Macromol Mater Eng 286:243–247

    Article  Google Scholar 

  53. Jeong HM, Lee SH, Cho KJ, Jeong YT, Kang KK, Oh JK (2002) Thermal and mechanical properties of the polymers synthesized by the sequential polymerization of propylene and 1-hexadecene. J Appl Polym Sci 84:1709–1715

    Article  Google Scholar 

  54. Mather PT, Kim BS, Ge Q, Liu C (2004) Synthesis of Nonioinic Telechelic Polymers Incorporating Polyhedral Oligo-silesquioxane and Uses Thereof. US Patent 2,004,024,098

    Google Scholar 

  55. Lee BS, Chun BC, Chung YC, Sul KI, Cho JW (2001) Structure and thermomechanical properties of polyurethane block copolymers with shape memory effect. Macromolecules 34:6431–6437

    Article  Google Scholar 

  56. Ping P, Wang H, Chen X, Jing X (2005) Poly(α-caprolactone) polyurethane and its shape-memory property. Biomacromolecules 6:587–592

    Article  Google Scholar 

  57. Hu J (2007) Characterization of shape memory properties in polymers, in shape memory polymers and textiles. Wood head Publishing Limited: England, pp 197–217

    Google Scholar 

  58. Li J, Rodgers WR, Xie T (2011) Semi-crystalline two-way shape memory elastomer. Polymer 52:5320–5325

    Article  Google Scholar 

  59. Xie T, Xiao X, Cheng YT (2009) Revealing triple-shape memory effect by polymer bilayers. Macromo Rapid Commun 30:1823–1827

    Article  Google Scholar 

  60. Kumar KS, Biju R, Nair Reghunadhan (2013) Progress in shape memory epoxy resins. React Funct Polym 73:421–430

    Article  Google Scholar 

  61. Liu Y, Li Y, Zhang C, Wang R, Run M, Song H (2016) Shape memory polybenzoxazine based on a siloxane-containing diphenol. J Polym Sci, Part B Polym Phys 54:1255–1266

    Article  Google Scholar 

  62. Liu Y, Huang J, Su X, Han M, Li H, Run M, Song H, Wu Y (2016) Shape memory Polybenzoxazine based on polyetheramine. React Funct Polym 102:62–69

    Article  Google Scholar 

  63. Jubsilp C, Punson K, Takeichi T, Rimdusit S (2010) Curing kinetics of benzoxazine-epoxy copolymer investigated by non-isothermal differential scanning calorimetry. Polym Degrad Stab 95:918–924

    Article  Google Scholar 

  64. Ning X, Ishida H (1994) Phenolic materials via ring-opening polymerization: Synthesis and characterization of bisphenol-A based benzoxazines and their polymers. J Polym Sci Part A 32:1121–1129

    Article  Google Scholar 

  65. Rimdusit S, Kunopast P, Dueramae I (2011) Thermomechanical properties of arylamine-based benzoxazine resins alloyed with epoxy resin. Polym Eng Sci 51:1797–1807

    Article  Google Scholar 

  66. Lee SM (1991) International encyclopedia of composites. VCH Publishers, New York

    Google Scholar 

  67. Rimdusit S, Ishida H (2000) Synergism and multiple mechanical relaxations observed in ternary systems based on benzoxazine, epoxy, and phenolic resins. J Polym Sci Part B 38:1687–1698

    Article  Google Scholar 

  68. Ishida H, Allen DJ (1996) Mechanical characterization of copolymers based on benzoxazine and epoxy. Polymer 37:4487–4495

    Article  Google Scholar 

  69. Rimdusit S, Lohwerathama M, Hemvichian K, Kasemsiri P, Dueramae I (2013) Shape memory polymers from benzoxazine-modified epoxy. Smart Mater Struct 22: art no. 075033

    Article  Google Scholar 

  70. Tanpitaksit T, Jubsilp C, Rimdusit (2015) Effects of benzoxazine resin on property enhancement of shape memory epoxy: a dual function of benzoxazine resin as a curing agent and a stable network segment. eXPRESS Polym Lett 9:824–837

    Article  Google Scholar 

  71. Dunkers J, Ishida H (1999) Reaction of benzoxazine-based phenolic resins with strong and weak carboxylic acids and phenols as catalysts. J Polym Sci Part A 37:1913–1921

    Article  Google Scholar 

  72. Jubsilp C, Punson K, Takeichi T, Rimdusit S (2010) Curing kinetics of Benzoxazine–epoxy copolymer investigated by non-isothermal differential scanning calorimetry. Polym Degrad Stabil 95:918–924

    Article  Google Scholar 

  73. Kimura H, Matsumoto A, Hasegawa K, Ohtsuka K, Fukuda A (1998) Epoxy resin cured by bisphenol A based benzoxazine. J Appl Polym Sci 68:1903–1910

    Article  Google Scholar 

  74. Jubsilp C, Takeichi T, Hiziroglu S, Rimdusit S (2008) High performance wood composites based on benzoxazine-epoxy alloys. Bioresour Technol 99:8880–8886

    Article  Google Scholar 

  75. Nielsen LE, Landel RF (1994) Mechanical properties of polymers and composites, 2nd edn. Marcel Dekker Inc., New York

    Google Scholar 

  76. Rimdusit S, Pirstpindvong S, Tanthapanichakoon W, Damrongsakkul S (2005) Toughening of polybenzoxazine by alloying with urethane prepolymer and flexible epoxy: A comparative study. Polym Eng Sci 45:288–296

    Article  Google Scholar 

  77. Meng H, Li G (2013) A review of stimuli-responsive shape memory polymer composites. Polymer 54:2199–2221

    Article  Google Scholar 

  78. Liu Y, Han C, Tan H, Du X (2010) Thermal, mechanical and shape memory properties of shape memory epoxy resin. Mater Sci Eng A 527:2510–2514

    Article  Google Scholar 

  79. Wu X, Zheng H, Liu Y (2010) Thermomechanical property of epoxy shape memory polymers. Int J Mod Phys B 24:2386–2391

    Article  Google Scholar 

  80. Lu L, Fan J, Li G (2016) Intrinsic healable and recyclable thermoset epoxy based on shape memory effect and transesterification reaction. Polymer 105:10–18

    Article  Google Scholar 

  81. Kuang X, Liu G, Dong X, Wang D (2016) Triple-shape memory epoxy based on Diels-Alder adduct molecular switch. Polymer 84:1–9

    Article  Google Scholar 

  82. Jin FL, Li X, Park SJ (2015) Synthesis and application of epoxy resins: a review. J Ind Eng Chem 29:1–11

    Article  Google Scholar 

  83. Wei J, Ma S, Yue H, Wang S, Zhu J (2018) Comparison of hydrogenated bisphenol A and bisphenol A epoxies: curing behavior, thermal and mechanical properties, shape memory properties. Macromol Res. https://doi.org/10.1007/s13233-018-6075-3

    Article  Google Scholar 

  84. Parameswaranpillai J, Ramanan SP, Seno J, Siengchin S, Magueresse A, Janke A, Pionteck J (2017) Shape memory properties of Epoxy/PPO–PEO–PPO Triblock copolymer blends with tunable thermal transitions and mechanical characteristics, industrial and engineering chemistry research. Am Chem Soc 56:14069–14077

    Google Scholar 

  85. Li S, an S (2015) Synthesis and characterization of novel biobased benzoxazines from cardbisphenol and the properties of their polymers. RSC Adv 5:61808–61814

    Article  Google Scholar 

  86. Lochab B, Varma IK, Bijwe J (2010) Thermal behaviour of cardanol-based benzoxazines. J Therm Anal Calorim 102:769–774

    Article  Google Scholar 

  87. Sini NK, Bijwe J, Varma IK (2014) Renewable benzoxazine monomer from Vanillin: Synthesis, characterization, and studies on curing behavior. J Polym Sci Part A 52:7–11

    Article  Google Scholar 

  88. Van A, Chiou K, Ishida H (2014) Use of renewable resource vanillin for the preparation of benzoxazine resin and reactive monomeric surfactant containing oxazine ring. Polymer 55:1443–1451

    Article  Google Scholar 

  89. Thirukumaran P, Shakila Parveen A, Sarojadevi M (2014) Synthesis and copolymerization of fully biobased benzoxazines from renewable resources. ACS Sust Chem Eng 2:2790–2801

    Article  Google Scholar 

  90. Hombunma P, Okhawilai M, Rimdusit S (2018) Characterization of novel shape memory polymer from Green-Polybenzoxazine/Epoxy alloy. In: Proceedings in the 2018 pure and applied chemistry international conference (PACCON2018), Songklanakarin, Thailand

    Google Scholar 

  91. Tobushi H, Hayashi S, Hoshio K, Makino Y, Miwa N (2006) Bending actuation characteristics of shape memory composite with SMA and SMP. J Intell Mater Syst Struct 17:1075–1081

    Article  Google Scholar 

  92. Rimdusit S, Hombunma P (2018) Shape memory polymer from Vaniline based Polybenzoxazine/castor oil-based epoxy copolymer. In: Proceeding in ICCE, 26 July 15–21 2018, France

    Google Scholar 

  93. Erden N, Jana SC (2013) Synthesis and characterization of shape-memory polyurethane-polybenzoxazine compounds. Macro Chem Phys 214:1225–1237

    Article  Google Scholar 

  94. Rimdusit S, Bangsen W, Kasemsiri P (2011) Chemorheology and thermomechanical characteristics of benzoxazine-urethane copolymers. J Appl Polym Sci 1321:3669–3678

    Article  Google Scholar 

  95. Rimdusit S, Mongkhonsi T, Kamonchaivanich P, Sujirot K, Tiptipakorn S (2008) Effects of polyol molecular weight on properties of benzoxazine-urethane polymer alloys. Polym Eng Sci 48:2238–2246

    Article  Google Scholar 

  96. Oprea S, Potolinca VO, Varganici CD (2016) Synthesis and properties of polyurethane urea with pyridine-2,6-dicarboxamide moieties in their structure. RSC Adv 6:106904–106913

    Article  Google Scholar 

  97. Weng NC, Wu CF, Tsen WC, Wu CL, Suen MC (2018) Synthesis and properties of shape memory polyurethanes generated from schiff-base chain extender containing benzoyl and pyridyl rings. Design Monom Polym 21:55–63

    Article  Google Scholar 

  98. Hager MD, Bode S, Weber C, Schubert US (2015) Shape memory polymers: past, present and future developments. Prog Polym Sci 49–50:3–33

    Article  Google Scholar 

  99. Xie T (2010) Tunable polymer multi-shape memory effect. Nature 464:267–270

    Article  Google Scholar 

  100. Hoeher R, Raidt T, Krumm C, Meuris M, Katzenberg F, Tiller JC (2013) Tunable multiple-shape memory polyethylene blends. Macro Chem Physics 214:2725–2732

    Article  Google Scholar 

  101. Samuel C, Barrau S, Lefebvre JM, Raquez JM, Dubois P (2014) Designing multiple-shape memory polymers with miscible polymer blends: Evidence and origins of a triple-shape memory effect for miscible PLLA/PMMA blends. Macromolecules 47:6791–6803

    Article  Google Scholar 

  102. Prathumrat P, Tiptipakorn S, Rimdusit S (2017) Multiple-shape memory polymers from benzoxazine-urethane copolymer. Smart Mater Struct 26: art no. 065025

    Article  Google Scholar 

  103. Zhuo S, Zhang G, Feng X, Jiang H, Shi J, Liu H, Li H (2016) Multiple shape memory polymers for self-deployable device. RSC Adv 6:50581–50586

    Article  Google Scholar 

  104. Zheng Y, Ji X, Yin M, Shen J, Guo S (2017) Strategy for fabricating multiple-shape memory polymeric materials via the multilayer assembly of co-continuous blends. ACS Appl Mater Interfaces 9:32270–32279

    Article  Google Scholar 

  105. Xiao X, Kong D, Qiu X, Zhang W, Zhang F, Liu L, Liu Y, Zhang S, Hu Y, Leng J (2015) Shape-memory polymers with adjustable high glass transition temperature. Macromolecules 48:3582–3589

    Article  Google Scholar 

  106. Xiao X, Kong D, Qiu X, Zhang W, Liu Y, Zhang S, Zhang F, Hu Y, Leng J (2015) Shape memory polymers with high and low temperature resistant properties. Sci Rep, 5: art no. 14137

    Google Scholar 

  107. Kong D, Xiao X (2016) High Cycle-file Shape Memory Polymer at High Temperature, Sci Rep 6: art no. 33610

    Google Scholar 

  108. Browne AL, Johnson NL (2007) Shape memory polymer seat assemblies. GM Global Technology Operations: US

    Google Scholar 

  109. Browne AL, Johnson NL (2005) Airflow control devices based on active materials. Genaral Motors Corporation: US

    Google Scholar 

  110. Fejos M, Romhány G, Karger-Kocsis J (2013) Shape memory characteristics of woven glass fibre fabric reinforced epoxy composite in flexure. J Reinf Plas Compos 31:1532–1537

    Article  Google Scholar 

  111. Ni QQ, Zhang CS, Fu Y, Dai G, Kimura T (2007) Shape memory effect and mechanical properties of carbon nanotube/shape memory polymer nanocomposites. Compos Struct 81:176–184

    Article  Google Scholar 

  112. Lu HB, Yu K, Sun SH, Liu YJ, Leng JS (2010) Mechanical and shape-memory behavior of shape-memory polymer composites with hybrid fillers. Polym Int 59:766–771

    Google Scholar 

  113. Du H, Song Z, Wang J, Liang Z, Shen Y, You F (2015) Microwave-induced shape-memory effect of silicon carbide/poly(vinyl alcohol) composite. Sens Actuat A 228:1–8

    Article  Google Scholar 

  114. Lan X, Liu Y, Lv H, Wang X, Leng J, Du S (2009) Fiber reinforced shape-memory polymer composite and its application in a deployable hinge. Smart Mat Struct 18: art no. 024002

    Article  Google Scholar 

  115. Kumar KSS, Biju R, Nair CPR (2013) Progress in shape memory epoxy resin. React Funct Polym 73:421–430

    Article  Google Scholar 

  116. Athimoolam M, Moorthy TV (2015) Tensile behaviour and characterization of amine treated nanoclay reinforced epoxy/ polyurethane blends and composites for shape memory applications. Ind J Eng Mater Sci 22:435–442

    Google Scholar 

  117. Gall K, Dunn ML, Liu Y, Finch D, Lake M, Munshi NA (2002) Shape memory polymer nanocomposites. Acta Mater 50:5115–5126

    Article  Google Scholar 

  118. Liu Y, Zhao J, Zhao L, Li W, Zhang H, Yu X, Zhang Z (2016) High performance shape memory epoxy/carbon nanotube nanocomposites. ACS Appl Mater Interfaces 8:311–320

    Article  Google Scholar 

  119. Chen L, Li W, Liu Y, Leng J (2016) Nanocomposites of epoxy-based shape memory polymer and thermally reduced graphite oxide: mechanical, thermal and shape memory characterizatuions. Compos B 91:75–82

    Article  Google Scholar 

  120. Jeon CW, An JE, Jeong YG (2012) High Performance cellulose acetate propionate composites reinfoced with exfolliated graphene. Compos B 43:3412–3418

    Article  Google Scholar 

  121. Zhoa YH, Zhang YF, Wu ZK, Bai SL (2016) Synergic enhancement of thermal properties of polymer composites by graphene foam and carbon black. Compos B 84:52–58

    Article  Google Scholar 

  122. Lee YR, Raghu AV, Jeong HM, Kim BK (2009) Properties of waterborne polyurthan/functionalized graphene sheet/nanocomposites prepared by an in situ method. Macromol Chem Phys 210:1247–1254

    Article  Google Scholar 

  123. Wang Y, Ma T, Tian W, Ye J, Wang X, Jiang X (2018) Electroactive shape memory properites of graphene/epoxy-cyanate ester nanocomposites. Pig Resin Techno 47:72–78

    Article  Google Scholar 

  124. Likitaporn C, Mora P, Tiptiptkorn S, Rimdusit S (2018) Recovery stress enhancement in shape memory composites from silicon carbide whisker-filled benzoxazine epoxy polymer alloy. J Intell Mater Sys Struct 29:388–396

    Article  Google Scholar 

  125. Biju R, Reghunadhan Nair CP (2013) Synthesis and characterization of shape memory epoxy-anhydride system. J Polym Res 20:82

    Article  Google Scholar 

  126. Zhang F, Zhang Z, Liu Y, Cheng W, Huang Y, Leng J (2015) Thermosetting epoxy reinforced shape memory composites microfiber membranes: fabrication, structure and properties. Compos A 76:54–61

    Article  Google Scholar 

  127. Plylaharn J, Okhawilai M, Rimdusit S (2018) High recovery stress obtained in benzoxazine-epoxy shape memory polymers reinforced with carbon fiber. In: Proceeding in the 2018 pure and applied chemistry international conference (PACCON 2018), Songklanakarin, Thailand

    Google Scholar 

  128. Deka H, Ranjan N (2010) Biocompatible hyperbranched polyurethane/multi-walled carbon nanotube composites as shape memory materials. Carbon 48:2013–2022

    Article  Google Scholar 

  129. Mahapatra SS, Ramasamy MS, Yoo HJ, Cho JW (2014) A reactive graphene sheet in situ functionalized hyperbranched polyurethane for high performance shape memory material. RSC Adv 4:15146–15153

    Article  Google Scholar 

  130. Memarian F, Fereidoon A, Ahangari MG (2016) Shape memory, mechanical and thermal properties of TPU/ABS/CNT: a ternary polymer composite. RSC Advances 6:101038–101047

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarawut Rimdusit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tiptipakorn, S., Rimdusit, S. (2020). Thermal Stability of Shape Memory Polymers, Polymer Blends, and Composites. In: Parameswaranpillai, J., Siengchin, S., George, J., Jose, S. (eds) Shape Memory Polymers, Blends and Composites. Advanced Structured Materials, vol 115. Springer, Singapore. https://doi.org/10.1007/978-981-13-8574-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8574-2_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8573-5

  • Online ISBN: 978-981-13-8574-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics