Skip to main content

Microscopy of Shape Memory Polymers, Polymer Blends, and Composites

  • Chapter
  • First Online:
Shape Memory Polymers, Blends and Composites

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 115))

  • 1428 Accesses

Abstract

Contemporary microscopes can magnify almost everything that is invisible to the naked eye, down to the atomic level. Current classifications include optical microscopy, electron microscopy, and scanning probe microscopy, in which optical one focuses on microscale while electron and scanning probe ones focus on the nanoscale. Microscopy is an indispensable technique of characterization for shape memory polymers (SMPs), including optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), infrared microscopy, fluorescence microscopy, and laser scanning confocal microscopy (LSCM). In this chapter, the micro- and nanostructures of different shape memory polymers, blends, and composites will be discussed. The applications of these microscopical techniques will be outlined. A brief account of various types of morphologies and their impact on shape memory effects will be provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ansari M, Golzar M, Baghani M, Soleimani M (2018) Shape memory characterization of poly (ε-caprolactone)(PCL)/polyurethane (PU) in combined torsion-tension loading with potential applications in cardiovascular stent. Polym Test

    Google Scholar 

  2. Baer GM, Small W, Wilson TS, Benett WJ, Matthews DL, Hartman J, Maitland DJ (2007) Fabrication and in vitro deployment of a laser-activated shape memory polymer vascular stent. Biomed Eng Online 6(1):43

    Article  Google Scholar 

  3. Bao M, Lou X, Zhou Q, Dong W, Yuan H, Zhang Y (2014) Electrospun biomimetic fibrous scaffold from shape memory polymer of PDLLA-co-TMC for bone tissue engineering. ACS Appl Mater Interfaces 6(4):2611–2621

    Article  Google Scholar 

  4. Baretić D, Pollard HK, Fisher DI, Johnson CM, Santhanam B, Truman CM, Kouba T, Fersht AR, Phillips C, Williams RL (2017) Structures of closed and open conformations of dimeric human ATM. Sci Advanc 3(5)

    Article  Google Scholar 

  5. Behl M, Lendlein A (2007) Shape-memory polymers. Mater Today 10(4):20–28

    Article  Google Scholar 

  6. Burnham NA, Colton RJ (1989) Measuring the nanomechanical properties and surface forces of materials using an atomic force microscope. J Vacuum Sci Technol A Vacuum Surf Films 7(4):2906–2913

    Article  Google Scholar 

  7. Chen HM, Wang L, Zhou SB (2018) Recent progress in shape memory polymers for biomedical applications. Chinese J Polym Sci: 1–13

    Google Scholar 

  8. Chen H, Xia H, Ni Q-Q (2018) Study on material performances of lead zirconate titanate/shape memory polyurethane composites combining shape memory and piezoelectric effect. Appl Sci Manufact, Compos Part A

    Book  Google Scholar 

  9. Chen S, Ban J, Mu L, Zhuo H (2018) Development of liquid crystalline polyurethane composites with stage-responsive shape memory effects. Polym Chem 9(5):576–583

    Article  Google Scholar 

  10. Cheng X, Kondyurin A, Bao S, Bilek MM, Ye L (2017) Plasma immersion ion implantation of polyurethane shape memory polymer: surface properties and protein immobilization. Appl Surf Sci 416:686–695

    Article  Google Scholar 

  11. Cho JW, Kim JW, Jung YC, Goo NS (2005) Electroactive shape-memory polyurethane composites incorporating carbon nanotubes. Macromol Rapid Commun 26(5):412–416

    Article  Google Scholar 

  12. Cox LM, Killgore JP, Li Z, Long R, Sanders AW, Xiao J, Ding Y (2016) Influences of substrate adhesion and particle size on the shape memory effect of polystyrene particles. Langmuir 32(15):3691–3698

    Article  Google Scholar 

  13. Cox LM, Killgore JP, Li Z, Zhang Z, Hurley DC, Xiao J, Ding Y (2014) Morphing metal–polymer Janus particles. Adv Mater 26(6):899–904

    Article  Google Scholar 

  14. Davis KA, Burke KA, Mather PT, Henderson JH (2011) Dynamic cell behavior on shape memory polymer substrates. Biomaterials 32(9):2285–2293

    Article  Google Scholar 

  15. Deng Z, Guo Y, Ma PX, Guo B (2018) Rapid thermal responsive conductive hybrid cryogels with shape memory properties, photothermal properties and pressure dependent conductivity. J Colloid Interface Sci

    Google Scholar 

  16. Ebara M (2015) Shape-memory surfaces for cell mechanobiology. Sci Technol Adv Mater 16(1):014804

    Article  Google Scholar 

  17. Ebara M, Uto K, Idota N, Hoffman JM, Aoyagi T (2012) Shape-memory surface with dynamically tunable nano-geometry activated by body heat. Adv Mater 24(2):273–278

    Article  Google Scholar 

  18. Eisenhaure JD, Xie T, Varghese S, Kim S (2013) Microstructured shape memory polymer surfaces with reversible dry adhesion. ACS Appl Mater Interfaces 5(16):7714–7717

    Article  Google Scholar 

  19. Espinha A, Guidetti G, Serrano MC, Frka-Petesic B, Dumanli AG, Hamad WY, Blanco A, López C, Vignolini S (2016) Shape memory cellulose-based photonic reflectors. ACS Appl Mater Interfaces 8(46): 31935–31940

    Article  Google Scholar 

  20. Fadeev M, Davidson-Rozenfeld G, Biniuri Y, Yakobi R, Cazelles R, Aleman-Garcia MA, Willner I (2018) Redox-triggered hydrogels revealing switchable stiffness properties and shape-memory functions. Polym Chem

    Google Scholar 

  21. Fang L, Gould OE, Lysyakova L, Jiang Y, Sauter T, Frank O, Becker T, Schossig M, Kratz K, Lendlein A (2018) Implementing and quantifying the shape‐memory effect of single polymeric micro/nanowires with an atomic force microscope. Chem Phys Chem

    Google Scholar 

  22. Fu CC, Grimes A, Long M, Ferri CG, Rich BD, Ghosh S, Ghosh S, Lee LP, Gopinathan A, Khine M (2009) Tunable nanowrinkles on shape memory polymer sheets. Adv Mater 21(44):4472–4476

    Article  Google Scholar 

  23. Fu S, Ren H, Ge Z, Zhuo H, Chen S (2017) Shape memory polyurethanes based on zwitterionic hard segments. Polymers 9(10):465

    Article  Google Scholar 

  24. Gall K, Mikulas M, Munshi NA, Beavers F, Tupper M (2000) Carbon fiber reinforced shape memory polymer composites. J Intell Mater Syst Struct 11(11):877–886

    Article  Google Scholar 

  25. Ghaemi F, Abdullah LC, Kargarzadeh H, Abdi MM, Azli NFWM, Abbasian M (2018) Comparative study of the electrochemical, biomedical, and thermal properties of natural and synthetic nanomaterials. Nanoscale Res Lett 13(1):112

    Article  Google Scholar 

  26. Gong T, Zhao K, Wang W, Chen H, Wang L, Zhou S (2014) Thermally activated reversible shape switch of polymer particles. J Mater Chem B 2(39):6855–6866

    Article  Google Scholar 

  27. Gong T, Zhao K, Yang G, Li J, Chen H, Chen Y, Zhou S (2014) The control of mesenchymal stem cell differentiation using dynamically tunable surface microgrooves. Advanc Healthcare Mater 3(10):1608–1619

    Article  Google Scholar 

  28. Gunes IS, Cao F, Jana SC (2008) Evaluation of nanoparticulate fillers for development of shape memory polyurethane nanocomposites. Polymer 49(9):2223–2234

    Article  Google Scholar 

  29. Guo Q, Bishop CJ, Meyer RA, Wilson DR, Olasov L, Schlesinger DE, Mather PT, Spicer JB, Elisseeff JH, Green JJ (2018) Entanglement-Based thermoplastic shape memory polymeric particles with photothermal actuation for biomedical applications. ACS Appl Mater Interfaces 10(16):13333–13341

    Article  Google Scholar 

  30. Han JP, Zhu Y, Hu JL, Luo HS, Yeung LY, Li WG, Meng QH, Ye GD, Zhang S, Fan Y (2012) Morphology, reversible phase crystallization, and thermal sensitive shape memory effect of cellulose Whisker/SMPU nano-composites. J Appl Polym Sci 123(2):749–762

    Article  Google Scholar 

  31. Han Y, Hu J, Jiang L (2018) Collagen skin, a water-sensitive shape memory material. J Mater Chem B

    Google Scholar 

  32. Han Y, Hu J, Xin Z (2018) In-Situ incorporation of alkyl-grafted silica into waterborne polyurethane with high solid content for enhanced physical properties of coatings. Polymers 10(5):514

    Article  Google Scholar 

  33. Heckmann W (2005) Characterization of polymer materials by fluorescence imaging. Microsc Microanal 11(S02):2036–2037

    Article  Google Scholar 

  34. Hu J, Zhu Y, Huang H, Lu J (2012) Recent advances in shape–memory polymers: structure, mechanism, functionality, modeling and applications. Prog Polym Sci 37(12):1720–1763

    Article  Google Scholar 

  35. Huang J, Lai L, Chen H, Chen S, Gao J (2018) Development of a new shape-memory polymer in the form of microspheres. Mater Lett 225:24–27

    Article  Google Scholar 

  36. Jahid MA, Hu J, Wong K, Wu Y, Zhu Y, Sheng HL, Zhongmin D (2018) Fabric coated with shape memory polyurethane and its properties. Polymers (20734360) 10(6)

    Article  Google Scholar 

  37. Ji F, Zhu Y, Hu J, Liu Y, Yeung L-Y, Ye G (2006) Smart polymer fibers with shape memory effect. Smart Mater Struct 15(6):1547

    Article  Google Scholar 

  38. Jin Yoo H, Chae Jung Y, Gopal Sahoo N, Whan Cho J (2006) Polyurethane-Carbon nanotube nanocomposites prepared by in-situ polymerization with electroactive shape memory. J Macromol Sci Part B 45(4):441–451

    Article  Google Scholar 

  39. Kashyap D, Kumar PK, Kanagaraj S (2018) 4D printed porous radiopaque shape memory polyurethane for endovascular embolization Additive Manufact

    Google Scholar 

  40. Lan X, Liu Y, Lv H, Wang X, Leng J, Du S (2009) Fiber reinforced shape-memory polymer composite and its application in a deployable hinge. Smart Mater Struct 18(2):024002

    Article  Google Scholar 

  41. Lee SJ, Atala A (2013) Scaffold technologies for controlling cell behavior in tissue engineering. Biomed Mater 8(1):010201

    Article  Google Scholar 

  42. Leng J, Lan X, Liu Y, Du S, Huang W, Liu N, Phee S, Yuan Q (2008) Electrical conductivity of thermoresponsive shape-memory polymer with embedded micron sized Ni powder chains. Appl Phys Lett 92(1):014104

    Article  Google Scholar 

  43. Libera MR, Egerton RF (2010) Advances in the transmission electron microscopy of polymers. Polym Rev 50(3):321–339

    Article  Google Scholar 

  44. Liu R, Dai H, Zhou Q, Zhang Q, Zhang P (2016) Synthesis and characterization of shape-memory poly carbonate urethane microspheres for future vascular embolization. J Biomater Sci Polym Edition 27(12):1248–1261

    Article  Google Scholar 

  45. Liu W, Chen H, Ge M, Ni Q-Q, Gao Q (2018) Electroactive shape memory composites with TiO2 whiskers for switching an electrical circuit. Mater Design 143:196–203

    Article  Google Scholar 

  46. Liu X, Su G, Guo Q, Lu C, Zhou T, Zhou C, Zhang X (2018) Hierarchically structured self-healing sensors with tunable positive/negative piezoresistivity. Advanc Function Mater 28(15):1706658

    Article  Google Scholar 

  47. Liu X, Su G, Guo Q, Lu C, Zhou T, Zhou C, Zhang X (2018) Hierarchically structured self‐healing sensors with tunable positive/negative piezoresistivity. Advanc Function Mater: 1706658

    Article  Google Scholar 

  48. Liu ZQ, Jiao D, Zhang ZF (2015) Remarkable shape memory effect of a natural biopolymer in aqueous environment. Biomaterials 65:13–21

    Article  Google Scholar 

  49. Lu W, Ma C, Zhang D, Le X, Zhang J, Huang Y, Huang CF, Chen T (2018) Real-time and in-situ investigation of supramolecular shape memory process by fluorescence switching. J Phys Chem C

    Google Scholar 

  50. Luo H, Wang H, Zhou H, Zhou X, Hu J, Yi G, Hao Z, Lin W (2018) Shape memory-enhanced electrical self-healing of stretchable electrodes. Appl Sci 8(3):392

    Article  Google Scholar 

  51. Luo HS, Hu JL, Zhu Y, Zhang S, Fan Y, Ye GD (2012) Achieving shape memory: reversible behaviors of cellulose-PU blends in wet-dry cycles. J Appl Polym Sci 125(1):657–665

    Article  Google Scholar 

  52. Luo X, Zhang X, Wang M, Ma D, Xu M, Li F (1997) Thermally stimulated shape-memory behavior of ethylene oxide-ethylene terephthalate segmented copolymer. J Appl Polym Sci 64(12):2433–2440

    Article  Google Scholar 

  53. Meier T, Bur J, Reinhard M, Schneider M, Kolew A, Worgull M, Hölscher H (2015) Programmable and self-demolding microstructured molds fabricated from shape-memory polymers. J Micromech Microeng 25(6):065017

    Article  Google Scholar 

  54. Mendez J, Annamalai PK, Eichhorn SJ, Rusli R, Rowan SJ, Foster EJ, Weder C (2011) Bioinspired mechanically adaptive polymer nanocomposites with water-activated shape-memory effect. Macromolecules 44(17):6827–6835

    Article  Google Scholar 

  55. Meng QH, Hu JL (2008) Self-organizing alignment of carbon nanotube in shape memory segmented fiber prepared by in situ polymerization and melt spinning. Compos Part A Appl Sci Manufact 39(2):314–321

    Article  Google Scholar 

  56. Meng QH, Hu JL, Ho KC, Ji FL, Chen SJ (2009) The shape memory properties of biodegradable Chitosan/Poly(L-lactide) composites. J Polym Environ 17(3):212–224

    Article  Google Scholar 

  57. Meng QH, Hu JL, Zhu Y (2007) Shape-memory polyurethane/multiwalled carbon nanotube fibers. J Appl Polym Sci 106(2):837–848

    Article  Google Scholar 

  58. Metcalfe A, Desfaits A-C, Salazkin I, Yahia LH, Sokolowski WM, Raymond J (2003) Cold hibernated elastic memory foams for endovascular interventions. Biomaterials 24(3):491–497

    Article  Google Scholar 

  59. Mohr R, Kratz K, Weigel T, Lucka-Gabor M, Moneke M, Lendlein A (2006) Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. Proc Nat Acad Sci USA 103(10):3540–3545

    Article  Google Scholar 

  60. Parameswaranpillai J, Ramanan SP, George JJ, Jose S, Zachariah AK, Siengchin S, Yorseng K, Janke A, Pionteck J (2018) PEG-ran-PPG modified epoxy thermosets: a simple approach to develop tough shape memory polymers. Indust Eng Chem Res 57(10): 3583–3590

    Article  Google Scholar 

  61. Raghunath S, Kumar S, Samal SK, Mohanty S, Nayak SK (2018) PLA/ESO/MWCNT nanocomposite: a study on mechanical, thermal and electroactive shape memory properties. J Polym Res 25:1–12

    Article  Google Scholar 

  62. Romo-Uribe A, Albanil L (2017) Dynamics retardation in hybrid POSS-NIPAm nanocomposites. Thermoplastic and thermally-responsive hydrogel behavior. Eur Polym J

    Google Scholar 

  63. Sahoo NG, Jung YC, Cho JW (2007) Electroactive shape memory effect of polyurethane composites filled with carbon nanotubes and conducting polymer. Mater Manufact Proc 22(4):419–423

    Article  Google Scholar 

  64. Schmidt AM (2006) Electromagnetic activation of shape memory polymer networks containing magnetic nanoparticles. Macromol Rapid Commun 27(14):1168–1172

    Article  Google Scholar 

  65. Song HB, Baranek A, Worrell BT, Cook WD, Bowman CN (2018) Photopolymerized Triazole‐based glassy polymer networks with superior tensile toughness. Advanc Function Mater: 1801095

    Article  Google Scholar 

  66. Song Y, Zhou S, Jin K, Qiao J, Li D, Xu C, Hu D, Di J, Li M, Zhang Z (2018) Hierarchical carbon nanotube composite yarn muscles. Nanoscale 10(8):4077–4084

    Article  Google Scholar 

  67. Stuart BH (2008) Polymer analysis. Wiley

    Google Scholar 

  68. Tan L, Hu J, Huang H, Han J, Hu H (2015) Study of multi-functional electrospun composite nanofibrous mats for smart wound healing. Int J Biol Macromol 79:469–476

    Article  Google Scholar 

  69. Tan L, Hu J, Ying Rena K, Zhu Y, Liu P (2017) Quick water-responsive shape memory hybrids with cellulose nanofibers. J Polym Sci Part A Polym Chem 55(4):767–775

    Article  Google Scholar 

  70. Tan L, Hu J, Zhao H (2015) Design of bilayered nanofibrous mats for wound dressing using an electrospinning technique. Mater Lett 156:46–49

    Article  Google Scholar 

  71. Weems A, Raymond J, Easley A, Wierzbicki M, Gustafson T, Monroe M, Maitland D (2017) Shape memory polymers with visible and near-infrared imaging modalities: synthesis, characterization and in vitro analysis. RSC Advanc 7(32):19742–19753

    Article  Google Scholar 

  72. Wornyo E, Gall K, Yang F, King W (2007) Nanoindentation of shape memory polymer networks. Polymer 48(11):3213–3225

    Article  Google Scholar 

  73. Wu Q, Hu J (2016) Waterborne polyurethane based thermoelectric composites and their application potential in wearable thermoelectric textiles. Compos Part B Eng 107:59–66

    Article  Google Scholar 

  74. Wu Y, Hu J, Zhang C, Han J, Wang Y, Kumar B (2015) A facile approach to fabricate a UV/heat dual-responsive triple shape memory polymer. J Mater Chem A 3(1):97–100

    Article  Google Scholar 

  75. Xiao X, Hu J (2016) Animal hairs as water-stimulated shape memory materials: mechanism and structural networks in molecular assemblies. Scientif Rep 6:26393

    Article  Google Scholar 

  76. Xiao X, Xie T, Cheng Y-T (2010) Self-healable graphene polymer composites. J Mater Chem 20(17):3508–3514

    Article  Google Scholar 

  77. Xiao XL, Hu JL (2016) Influence of sodium bisulfite and lithium bromide solutions on the shape fixation of camel guard hairs in slenderization process. Int J Chem Eng

    Google Scholar 

  78. Xiao XL, Hu JL, Hui D (2016) Tensile-relaxation study of camel hair fiber at elastic stretching region: Analytical model and experiment. Compos Part B-Eng 91:559–568

    Article  Google Scholar 

  79. Xie R, Hu J, Hoffmann O, Zhang Y, Ng F, Qin T, Guo X (2018) Self-fitting shape memory polymer foam inducing bone regeneration: a rabbit femoral defect study. Biochimica et Biophysica Acta (BBA)-General Subjects 1862(4): 936–945

    Article  Google Scholar 

  80. Xie R, Hu J, Ng F, Tan L, Qin T, Zhang M, Guo X (2017) High performance shape memory foams with isocyanate-modified hydroxyapatite nanoparticles for minimally invasive bone regeneration. Ceramics Int 43(6):4794–4802

    Article  Google Scholar 

  81. Yang B, Huang WM, Li C, Chor JH (2005) Effects of moisture on the glass transition temperature of polyurethane shape memory polymer filled with nano-carbon powder. Eur Polym J 41(5):1123–1128

    Article  Google Scholar 

  82. Yang F, Wornyo E, Gall K, King W (2007) Nanoscale indent formation in shape memory polymers using a heated probe tip. Nanotechnology 18(28):285302

    Article  Google Scholar 

  83. Yin Q, Wang D, Jia H, Ji Q, Wang L, Li G, Yin B (2018) Water-induced modulus changes of bio-based uncured nanocomposite film based on natural rubber and bacterial cellulose nanocrystals. Indust Crops Products 113:240–248

    Article  Google Scholar 

  84. Yoo J-W, Mitragotri S (2010) Polymer particles that switch shape in response to a stimulus. Proc Nat Acad Sci 107(25):11205–11210

    Article  Google Scholar 

  85. Yu K, Liu Y, Leng J (2011) Conductive shape memory polymer composite incorporated with hybrid fillers: electrical, mechanical, and shape memory properties. J Intell Mater Syst Struct 22(4):369–379

    Article  Google Scholar 

  86. Yu K, Liu Y, Liu Y, Peng H-X, Leng J (2014) Mechanical and shape recovery properties of shape memory polymer composite embedded with cup-stacked carbon nanotubes. J Intell Mater Syst Struct 25(10):1264–1275

    Article  Google Scholar 

  87. Yu Z, Zhang Q, Li L, Chen Q, Niu X, Liu J, Pei Q (2011) Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes. Advanc Mater 23(5):664–668

    Article  Google Scholar 

  88. Zhang H, Wang H, Zhong W, Du Q (2009) A novel type of shape memory polymer blend and the shape memory mechanism. Polymer 50(6):1596–1601

    Article  Google Scholar 

  89. Zhu Y, Hu J, Luo H, Young RJ, Deng L, Zhang S, Fan Y, Ye G (2012) Rapidly switchable water-sensitive shape-memory cellulose/elastomer nano-composites. Soft Matter 8(8):2509–2517

    Article  Google Scholar 

  90. Zhu Y, Hu JL, Liu YJ (2009) Shape memory effect of thermoplastic segmented polyurethanes with self-complementary quadruple hydrogen bonding in soft segments. Eur Phys J E 28(1):3–10

    Article  Google Scholar 

  91. Zhu Y, Hu JL, Luo HS, Young RJ, Deng LB, Zhang S, Fan Y, Ye GD (2012) Rapidly switchable water-sensitive shape-memory cellulose/elastomer nano-composites. Soft Matter 8(8):2509–2517

    Article  Google Scholar 

  92. Zhu Y, Hu JL, Yeung KW, Liu YQ, Liem HM (2006) Influence of ionic groups on the crystallization and melting behavior of segmented polyurethane ionomers. J Appl Polym Sci 100(6):4603–4613

    Article  Google Scholar 

  93. Zhuo HT, Hu JL, Chen SJ (2008) Electrospun polyurethane nanofibres having shape memory effect. Mater Lett 62(14):2074–2076

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinlian Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hu, J., Zhu, S. (2020). Microscopy of Shape Memory Polymers, Polymer Blends, and Composites. In: Parameswaranpillai, J., Siengchin, S., George, J., Jose, S. (eds) Shape Memory Polymers, Blends and Composites. Advanced Structured Materials, vol 115. Springer, Singapore. https://doi.org/10.1007/978-981-13-8574-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8574-2_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8573-5

  • Online ISBN: 978-981-13-8574-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics