Skip to main content

Novel Techniques for the Preparation of Shape-Memory Polymers, Polymer Blends and Composites at Micro and Nanoscales

  • Chapter
  • First Online:
Shape Memory Polymers, Blends and Composites

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 115))

Abstract

Shape-memory polymers (SMPs) are one type of smart materials that are capable to recover from a “fixed” temporary shape to a “memorized” original shape under external stimulus. This chapter provides a comprehensive overview about the preparation methods of shape-memory polymers, polymer blends, and composites. Following a brief introduction of SMPs, the strategies for the preparation of conventional SMPs such as chemical cross-linking of thermoplastic polymers, single-step polymerization of monomers/prepolymers with cross-linkers, one-step synthesis of phase-segregated block copolymers are reviewed. Next, the notable recent progress in SMP blends are systemically studied including direct blending of different polymers, addition of a third component into blends, novel processing methods, etc. Third, the researches in SMP composites including reinforcement effect, indirect thermal stimuli-responsive effects, novel shape-memory effect, and functional applications are discussed. Finally, the current challenges and future advancements of SMP blends and composites are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lendlein A, Kelch S (2002) Shape-memory polymers. Angew Chem Int Ed 41(12):2034

    Article  Google Scholar 

  2. Hu J, Zhu Y, Huang H, Lu J (2012) Recent advances in shape-memory polymers: structure, mechanism, functionality, modeling and applications. Prog Polym Sci 37(12):1720

    Article  Google Scholar 

  3. Zhao Q, Qi HJ, Xie T (2015) Recent progress in shape memory polymer: new behavior, enabling materials, and mechanistic understanding. Prog Polym Sci 49–50:79

    Article  Google Scholar 

  4. Xie T (2011) Recent advances in polymer shape memory. Polymer 52(22):4985

    Article  Google Scholar 

  5. Liu C, Qin H, Mather PT (2007) Review of progress in shape-memory polymers. J Mater Chem 17(16):1543

    Article  Google Scholar 

  6. Wang W, Liu Y, Leng J (2016) Recent developments in shape memory polymer nanocomposites: actuation methods and mechanisms. Coord Chem Rev 320–321:38

    Article  Google Scholar 

  7. Du H, Zhang J (2010) Solvent induced shape recovery of shape memory polymer based on chemically cross-linked poly(vinyl alcohol). Soft Matter 6(14):3370

    Article  Google Scholar 

  8. Liu CD, Chun SB, Mather PT, Zheng L, Haley EH, Coughlin EB (2002) Chemically cross-linked polycyclooctene: synthesis, characterization, and shape memory behavior. Macromolecules 35(27):9868

    Article  Google Scholar 

  9. Li J, Rodgers WR, Xie T (2011) Semi-crystalline two-way shape memory elastomer. Polymer 52(23):5320

    Article  Google Scholar 

  10. Xie T, Rousseau IA (2009) Facile tailoring of thermal transition temperatures of epoxy shape memory polymers. Polymer 50(8):1852

    Article  Google Scholar 

  11. Xie T, Xiao X, Cheng YT (2009) Revealing triple-shape memory effect by polymer bilayers. Macromol Rapid Commun 30(21):1823

    Article  Google Scholar 

  12. Liu X, Li H, Zeng Q, Zhang Y, Kang H, Duan H, Guo Y, Liu H (2015) Electro-active shape memory composites enhanced by flexible carbon nanotube/graphene aerogels. J Mater Chem A 3(21):11641

    Article  Google Scholar 

  13. Lee BS, Chun BC, Chung Y-C, Sul KI, Cho JW (2001) Structure and thermomechanical properties of polyurethane block copolymers with shape memory effect. Macromolecules 34(18):6431

    Article  Google Scholar 

  14. Huang WM, Yang B, Zhao Y, Ding Z (2010) Thermo-moisture responsive polyurethane shape-memory polymer and composites: a review. J Mater Chem 20(17):3367

    Article  Google Scholar 

  15. Lendlein A, Langer R (2002) Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296(5573):1673

    Article  Google Scholar 

  16. Meng Q, Hu J (2009) A review of shape memory polymer composites and blends. Compos A Appl Sci Manuf 40(11):1661

    Article  Google Scholar 

  17. Liu C, Mather PT (2003) Thermomechanical characterization of blends of poly (vinyl acetate) with semicrystalline polymers for shape memory applications. In: Annual technical conference—ANTEC, conference proceedings, vol 2, pp 1962–1966

    Google Scholar 

  18. Behl M, Ridder U, Feng Y, Kelch S, Lendlein A (2009) Shape-memory capability of binary multiblock copolymer blends with hard and switching domains provided by different components. Soft Matter 5(3):676

    Article  Google Scholar 

  19. You J, Dong W, Zhao L, Cao X, Qiu J, Sheng W, Li Y (2012) Crystal orientation behavior and shape-memory performance of poly(vinylidene fluoride)/acrylic copolymer blends. J Phys Chem B 116(4):1256

    Article  Google Scholar 

  20. You J, Fu H, Dong W, Zhao L, Cao X, Li Y (2012) Shape memory performance of thermoplastic polyvinylidene fluoride/acrylic copolymer blends physically cross-linked by tiny crystals. ACS Appl Mater Interfaces 4(9):4825

    Article  Google Scholar 

  21. Samuel C, Barrau S, Lefebvre J-M, Raquez J-M, Dubois P (2014) Designing multiple-shape memory polymers with miscible polymer blends: evidence and origins of a triple-shape memory effect for miscible PLLA/PMMA blends. Macromolecules 47(19):6791

    Article  Google Scholar 

  22. Zhang Z-X, Qi X-D, Li S-T, Yang J-H, Zhang N, Huang T, Wang Y (2018) Water-actuated shape-memory and mechanically-adaptive poly(ethylene vinyl acetate) achieved by adding hydrophilic poly (vinyl alcohol). Eur Polymer J 98:237

    Article  Google Scholar 

  23. Zhang H, Wang H, Zhong W, Du Q (2009) A novel type of shape memory polymer blend and the shape memory mechanism. Polymer 50(6):1596

    Article  Google Scholar 

  24. Kurahashi E, Sugimoto H, Nakanishi E, Nagata K, Inomata K (2012) Shape memory properties of polyurethane/poly(oxyethylene) blends. Soft Matter 8(2):496

    Article  Google Scholar 

  25. Liu T, Huang R, Qi X, Dong P, Fu Q (2017) Facile preparation of rapidly electro-active shape memory thermoplastic polyurethane/polylactide blends via phase morphology control and incorporation of conductive fillers. Polymer 114:28

    Article  Google Scholar 

  26. Weiss RA, Izzo E, Mandelbaum S (2008) New design of shape memory polymers: mixtures of an elastomeric ionomer and low molar mass fatty acids and their salts. Macromolecules 41(9):2978

    Article  Google Scholar 

  27. Song S, Feng J, Wu P (2011) A new strategy to prepare polymer-based shape memory elastomers. Macromol Rapid Commun 32:1569

    Article  Google Scholar 

  28. Zhang Q, Song S, Feng J, Wu P (2012) A new strategy to prepare polymer composites with versatile shape memory properties. J Mater Chem 22(47):24776

    Article  Google Scholar 

  29. Yuan D, Chen Z, Xu C, Chen K, Chen Y (2015) Fully biobased shape memory material based on novel cocontinuous structure in poly(lactic acid)/natural rubber TPVs fabricated via peroxide-induced dynamic vulcanization and in situ interfacial compatibilization. ACS Sustain Chem Eng 3(11):2856

    Article  Google Scholar 

  30. Cuevas JM, Rubio R, Germán L, Laza JM, Vilas JL, Rodriguez M, León LM (2012) Triple-shape memory effect of covalently crosslinked polyalkenamer based semicrystalline polymer blends. Soft Matter 8(18):4928

    Article  Google Scholar 

  31. Zhang Z-X, Wei X, Yang J-H, Zhang N, Huang T, Wang Y, Gao X-L (2016) Triple-shape memory materials based on cross-linked poly(ethylene vinyl acetate) and poly(ε-caprolactone). Ind Eng Chem Res 55(47):12232

    Article  Google Scholar 

  32. Zhao J, Chen M, Wang X, Zhao X, Wang Z, Dang ZM, Ma L, Hu GH, Chen F (2013) Triple shape memory effects of cross-linked polyethylene/polypropylene blends with cocontinuous architecture. ACS Appl Mater Interfaces 5(12):5550

    Article  Google Scholar 

  33. Li F, Chen Y, Zhu W, Zhang X, Xu M (1998) Shape memory effect of polyethylene/nylon 6 graft copolymers. Polymer 39(26):6929

    Article  Google Scholar 

  34. Suchao-in K, Chirachanchai S (2013) “Grafting to” as a novel and simple approach for triple-shape memory polymers. ACS Appl Mater Interfaces 5(15):6850

    Article  Google Scholar 

  35. Chen Y, Chen K, Wang Y, Xu C (2015) Biobased heat-triggered shape-memory polymers based on polylactide/epoxidized natural rubber blend system fabricated via peroxide-induced dynamic vulcanization: co-continuous phase structure, shape memory behavior, and interfacial compatibilization. Ind Eng Chem Res 54(35):8723

    Article  Google Scholar 

  36. Xu C, Lin B, Liang X, Chen Y (2016) Zinc dimethacrylate induced in situ interfacial compatibilization turns EPDM/PP TPVs into a shape memory material. Ind Eng Chem Res 55(16):4539

    Article  Google Scholar 

  37. Du J, Armstrong SR, Baer E (2013) Co-extruded multilayer shape memory materials: comparing layered and blend architectures. Polymer 54(20):5399

    Article  Google Scholar 

  38. Zheng Y, Dong R, Shen J, Guo S (2016) Tunable shape memory performances via multilayer assembly of thermoplastic polyurethane and polycaprolactone. ACS Appl Mater Interfaces 8(2):1371

    Article  Google Scholar 

  39. Luo X, Mather PT (2009) Preparation and characterization of shape memory elastomeric composites. Macromolecules 42(19):7251

    Article  Google Scholar 

  40. Luo X, Mather PT (2010) Triple-shape polymeric composites (TSPCs). Adv Func Mater 20(16):2649

    Article  Google Scholar 

  41. Liu Y, Lv H, Lan X, Leng J, Du S (2009) Review of electro-active shape-memory polymer composite. Compos Sci Technol 69(13):2064

    Article  Google Scholar 

  42. Zhang Z-X, Wang W-Y, Yang J-H, Zhang N, Huang T, Wang Y (2016) Excellent electroactive shape memory performance of EVA/PCL/CNT blend composites with selectively localized CNTs. J Phys Chem C 120(40):22793

    Article  Google Scholar 

  43. Qi X, Dong P, Liu Z, Liu T, Fu Q (2016) Selective localization of multi-walled carbon nanotubes in bi-component biodegradable polyester blend for rapid electroactive shape memory performance. Compos Sci Technol 125:38

    Article  Google Scholar 

  44. Wang Z, Zhao J, Chen M, Yang M, Tang L, Dang ZM, Chen F, Huang M, Dong X (2014) Dually actuated triple shape memory polymers of cross-linked polycyclooctene-carbon nanotube/polyethylene nanocomposites. ACS Appl Mater Interfaces 6(22):20051

    Article  Google Scholar 

  45. Zhang ZX, Dou JX, He JH, Xiao CX, Shen LY, Yang JH, Wang Y, Zhou ZW (2017) Electrically/infrared actuated shape memory composites based on a bio-based polyester blend and graphene nanoplatelets and their excellent self-driven ability. J Mater Chem C 5(17):4145

    Article  Google Scholar 

  46. Qi X, Xiu H, Wei Y, Zhou Y, Guo Y, Huang R, Bai H, Fu Q (2017) Enhanced shape memory property of polylactide/thermoplastic poly(ether)urethane composites via carbon black self-networking induced co-continuous structure. Compos Sci Technol 139:8

    Article  Google Scholar 

  47. Wei Y, Huang R, Dong P, Qi X-D, Fu Q (2018) Preparation of polylactide/poly(ether)urethane blends with excellent electro-actuated shape memory via incorporating carbon black and carbon nanotubes hybrids fillers. Chin J Polym Sci 36(10):1175

    Article  Google Scholar 

  48. Leng J, Lan X, Liu Y, Du S (2011) Shape-memory polymers and their composites: stimulus methods and applications. Prog Mater Sci 56(7):1077

    Article  Google Scholar 

  49. Mu T, Liu L, Lan X, Liu Y, Leng J (2018) Shape memory polymers for composites. Compos Sci Technol 160:169

    Article  Google Scholar 

  50. Meng H, Li G (2013) A review of stimuli-responsive shape memory polymer composites. Polymer 54(9):2199

    Article  Google Scholar 

  51. Miaudet P, Derre A, Maugey M, Zakri C, Piccione PM, Inoubli R, Poulin P (2007) Shape and temperature memory of nanocomposites with broadened glass transition. Science 318(5854):1294

    Article  Google Scholar 

  52. Zhang Y, Wang Q, Wang C, Wang T (2011) High-strain shape memory polymer networks crosslinked by SiO2. J Mater Chem 21(25):9073

    Article  Google Scholar 

  53. Agarwal P, Chopra M, Archer LA (2011) Nanoparticle netpoints for shape-memory polymers. Angew Chem Int Ed 50(37):8670

    Article  Google Scholar 

  54. Xu J, Song J (2010) High performance shape memory polymer networks based on rigid nanoparticle cores. Proc Natl Acad Sci USA 107(17):7652

    Article  Google Scholar 

  55. Mya KY, Gose HB, Pretsch T, Bothe M, He C (2011) Star-shaped POSS-polycaprolactone polyurethanes and their shape memory performance. J Mater Chem 21(13):4827

    Article  Google Scholar 

  56. Chen J, Zhang Z-X, Huang W-B, Li J-L, Yang J-H, Wang Y, Zhou Z-W, Zhang J-H (2015) Carbon nanotube network structure induced strain sensitivity and shape memory behavior changes of thermoplastic polyurethane. Mater Des 69:105

    Article  Google Scholar 

  57. Cho JW, Kim JW, Jung YC, Goo NS (2005) Electroactive shape-memory polyurethane composites incorporating carbon nanotubes. Macromol Rapid Commun 26(5):412

    Article  Google Scholar 

  58. Tang Z, Sun D, Yang D, Guo B, Zhang L, Jia D (2013) Vapor grown carbon nanofiber reinforced bio-based polyester for electroactive shape memory performance. Compos Sci Technol 75:15

    Article  Google Scholar 

  59. Leng JS, Huang WM, Lan X, Liu YJ, Du SY (2008) Significantly reducing electrical resistivity by forming conductive Ni chains in a polyurethane shape-memory polymer/carbon-black composite. Appl Phys Lett 92(20):204101

    Article  Google Scholar 

  60. Mohr R, Kratz K, Weigel T, Lucka-Gabor M, Moneke M, Lendlein A (2006) Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. Proc Natl Acad Sci USA 103(10):3540

    Article  Google Scholar 

  61. Yu X, Zhou S, Zheng X, Guo T, Xiao Y, Song B (2009) A biodegradable shape-memory nanocomposite with excellent magnetism sensitivity. Nanotechnology 20(23):235702

    Article  Google Scholar 

  62. Habault D, Zhang H, Zhao Y (2013) Light-triggered self-healing and shape-memory polymers. Chem Soc Rev 42(17):7244

    Article  Google Scholar 

  63. Koerner H, Price G, Pearce NA, Alexander M, Vaia RA (2004) Remotely actuated polymer nanocomposites–stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nat Mater 3(2):115

    Article  Google Scholar 

  64. Ge F, Lu X, Xiang J, Tong X, Zhao Y (2017) An optical actuator based on gold-nanoparticle-containing temperature-memory semicrystalline polymers. Angew Chem Int Ed 56(22):6126

    Article  Google Scholar 

  65. Zhang H, Xia H, Zhao Y (2012) Optically triggered and spatially controllable shape-memory polymer-gold nanoparticle composite materials. J Mater Chem 22(3):845

    Article  Google Scholar 

  66. Capadona JR, Shanmuganathan K, Tyler DJ, Rowan SJ, Weder C (2008) Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis. Science 319(5868):1370

    Article  Google Scholar 

  67. Mendez J, Annamalai PK, Eichhorn SJ, Rusli R, Rowan SJ, Foster EJ, Weder C (2011) Bioinspired mechanically adaptive polymer nanocomposites with water-activated shape-memory effect. Macromolecules 44(17):6827

    Article  Google Scholar 

  68. Zhu Y, Hu J, Luo H, Young RJ, Deng L, Zhang S, Fan Y, Ye G (2012) Rapidly switchable water-sensitive shape-memory cellulose/elastomer nano-composites. Soft Matter 8(8):2509

    Article  Google Scholar 

  69. Qi X, Yao X, Deng S, Zhou T, Fu Q (2014) Water-induced shape memory effect of graphene oxide reinforced polyvinyl alcohol nanocomposites. J Mater Chem A 2(7):2240

    Article  Google Scholar 

  70. Qi X, Guo Y, Wei Y, Dong P, Fu Q (2016) Multi-shape and temperature memory effects via strong physical confinement in poly(propylene carbonate)/graphene oxide nanocomposites. J Phys Chem B 120:11064

    Article  Google Scholar 

  71. He Z, Satarkar N, Xie T, Cheng YT, Hilt JZ (2011) Remote controlled multishape polymer nanocomposites with selective radiofrequency actuations. Adv Mater 23(28):3192

    Article  Google Scholar 

  72. Qi XD, Yang GH, Jing MF, Fu Q, Chiu FC (2014) Microfibrillated cellulose-reinforced bio-based poly(propylene carbonate) with dual shape memory and self-healing properties. J Mater Chem A 2(47):20393

    Article  Google Scholar 

  73. Qi X, Jing M, Liu Z, Dong P, Liu T, Fu Q (2016) Microfibrillated cellulose reinforced bio-based poly(propylene carbonate) with dual-responsive shape memory properties. RSC Adv 6(9):7560

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Qi, Xd., Wang, Y. (2020). Novel Techniques for the Preparation of Shape-Memory Polymers, Polymer Blends and Composites at Micro and Nanoscales. In: Parameswaranpillai, J., Siengchin, S., George, J., Jose, S. (eds) Shape Memory Polymers, Blends and Composites. Advanced Structured Materials, vol 115. Springer, Singapore. https://doi.org/10.1007/978-981-13-8574-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8574-2_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8573-5

  • Online ISBN: 978-981-13-8574-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics