Skip to main content

Scattering and Other Miscellanies Techniques for the Characterization of Shape Memory Polymers

  • Chapter
  • First Online:
Shape Memory Polymers, Blends and Composites

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 115))

Abstract

Shape memory polymers experience stress-induced macromolecular reorganization like alignment, crystallization, isotropic-to-smectic order, and temperature-induced melting (disorder), crystallization (ordering). The molecular processes involve short and/or long-range order. Hence, there is a need to apply suitable multi-scale characterization techniques to assess the molecular changes occurring during shape memory events. Ideally, the spatial resolution ranges from Å to nm- to μm-scale. This chapter focuses on the application of wide-angle and small-angle X-ray scattering (WAXS and SAXS, respectively), small-angle light scattering (SALS) and optical microscopy techniques which are ideal to get insights into the molecular mechanisms associated to shape memory in polymers. These techniques are ideally suited to enable in situ and time-resolved studies. It is the author’s view that understanding the molecular mechanisms is at the heart of shape memory effects and novel in situ techniques and simultaneous monitoring of microstructure and bulk extensional properties during shape memory cycles need to be implemented. The main body of the chapter focused on fundamentals of X-ray scattering, recording techniques, and applications to the study of shape memory polymers using conventional X-ray sources and synchrotron radiation. WAXS and SAXS enable Å- and nm-scale structure analysis and synchrotron sources enable time-resolved resolution. On the other hand, in situ and time-resolved studies of microstructure at μm-scale are enabled by optical microscopy and SALS. These techniques combined with temperature or uniaxial testing are also a powerful tool to understand molecular mechanisms associated to shape memory behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

d :

Bragg spacing

f :

Orientational distribution function (ODF)

D :

Detector-specimen distance

I :

Intensity of scattered radiation

\( {\varvec{\hat{n}}} \) :

Molecular director

\( \hat{P}_{n} \) :

Weighted Legendre polynomials

\( \left\langle {P_{n} } \right\rangle \) :

Orientational order parameters

r :

Radial spatial coordinate in cylindrical coordinates or radial coordinate in flat-plate camera

R g :

Radius of gyration

|q| :

Magnitude of scattering vector \( \left( { {=}\frac{4\pi }{\lambda }Sin\,\theta } \right) \)

Q :

Invariant

λ :

Radiation wavelength

:

Scattering angle

ϕ :

Azimuthal angle

References

  1. Alexander LE (1969) X-ray diffraction methods in polymer science. Wiley, London

    Google Scholar 

  2. Alvarado-Tenorio B, Romo-Uribe A, Mather PT (2011) Microstructure and phase behavior of POSS/PCL shape memory nanocomposites. Macromolecules 44:5682–5692

    Article  Google Scholar 

  3. Alvarado-Tenorio B, Romo-Uribe A, Mather PT (2015) Nanoscale order and crystallization in POSS-PCL shape memory molecular networks. Macromolecules 48:5770–5779

    Article  Google Scholar 

  4. Alvarado-Tenorio B, Romo-Uribe A, Mather PT (2012) Stress-induced bimodal ordering in POSS/PCL biodegradable shape memory nanocomposites. In: MRS symposium proceedings, vol 1450. https://doi.org/10.1557/opl.2012.1327

  5. Alvarado-Tenorio B, Romo-Uribe A, Mather PT (2013) Nanoscale anisotropic orientation in shape memory random POSS/Polycaprolactone nanocomposites. In: MRS symposium proceedings, vol 1453. https://doi.org/10.1557/opl.2013.1117

  6. Bellin I, Kelch S, Robert L, Lendlein A (2006) Polymeric triple-shape materials. Proc Natl Acad Sci USA 103:18043–18047

    Article  Google Scholar 

  7. Bettelheim FA, Kumar M (1977) Small-angle light-scattering patterns of corneas of different species. Invest Ophthalmol Vis Sci 16:236–240

    Google Scholar 

  8. Castelleto V, Hamley IW (2006) Capillary flow behavior of worm-like micelles studied by small-angle X-ray scattering and small angle light scattering. Polym Adv Technol 17:137–144

    Article  Google Scholar 

  9. Chien Y-C, Chuang W-T, Jeng U-S, Hsu S-H (2017) Preparation, characterization, and mechanism for biodegradable and biocompatible polyurethane shape memory elastomers. ACS Appl Mater Interfaces 9(6):5419–5429

    Article  Google Scholar 

  10. Chu B, Hsiao BS (2001) Small-angle X-ray scattering of polymers. Chem Rev 101:1727–1761

    Article  Google Scholar 

  11. Chu B, Hsiao BS (2001) Small-angle X-ray scattering of polymers. Chem Rev 101:1727–1761

    Article  Google Scholar 

  12. Chung T, Romo-Uribe A, Mather PT (2008) Two-way reversible shape memory in a semicrystalline network. Macromolecules 41(1):184–192

    Article  Google Scholar 

  13. Deutsch M (1991) Orientational order determination in liquid crystals by X-ray diffraction. Phys Rev A 44:8264–8270

    Article  Google Scholar 

  14. Finkelmann H, Kock HJ, Rehage G (1981) Investigations on liquid crystalline polysiloxanes 3. Liquid crystalline elastomers—a new type of liquid crystalline material. Makromoleculare Chem Rapid Comm 2:317–322

    Article  Google Scholar 

  15. Grubb DT, Prasad K, Adams W (1991) Small-angle X-ray diffraction of Kevlar using synchrotron radiation. Polymer 32:1167–1172

    Article  Google Scholar 

  16. Hsiao BS, Verma RK (1998) A novel approach to extract morphological variables in crystalline polymers from time-resolved synchrotron SAXS data. J Synchrotron Radiat 5:23–29

    Article  Google Scholar 

  17. Huitron-Rattinger E, Ishida K, Romo-Uribe A, Mather PT (2013) Thermally modulated nanostructure of poly(ε-caprolactone)–POSS multiblock thermoplastic polyurethanes. Polymer 54:3350–3362

    Article  Google Scholar 

  18. Janicki J (2003) Time-resolved small-angle X-ray scattering and wide-angle X-ray diffraction studies on the nanostructure of melt-processable molecular composites. J Appl Crystal 36:986–990

    Article  Google Scholar 

  19. Kasai N, Kakudo M (2005) X-ray diffraction by macromolecules, Kodansha-Springer, Japan

    Google Scholar 

  20. Kumar S, Werner S, Grubb DT, Adams W (1994) On the small-angle X-ray scattering of rigid-rod polymer fibres. Polymer 35:5408–5412

    Article  Google Scholar 

  21. Leadbetter AJ (1979) Structural studies in nematic, smectic A, and smectic C phases. In: Luckhurst GA, Gray GW (eds) The molecular physics of liquid crystals. Academic Press, London

    Google Scholar 

  22. Leadbetter AJ, Norris EK (1979) Distribution functions in three liquid crystals from X-ray diffraction measurements. Mol Phys 38:669–686

    Article  Google Scholar 

  23. Luo X, Mather PT (2010) Triple-shape polymeric composites (TSPCs). Adv Funct Mater 20:2649–2656

    Article  Google Scholar 

  24. Luo X, Mather PT (2013) Shape memory assisted self-healing coating. ACS Macro Lett 2:152–156

    Article  Google Scholar 

  25. Luo X, Ou R, Eberly DE, Singhal A, Vyratyaporn W, Mather PT (2009) A thermoplastic/thermoset blend exhibiting thermal mending and reversible adhesion. ACS Appl Mater Interfaces 1:612–620

    Article  Google Scholar 

  26. Mather PT, Luo X, Rousseau IA (2009) Shape memory polymer research. Annu Rev Mater Sci 39:445–471

    Article  Google Scholar 

  27. Mather PT, Romo-Uribe A, Han CD, Kim SS (1997) Rheo-optical evidence of the flow-induced isotropic-nematic transition in a thermotropic liquid crystalline polymer. Macromolecules 30:7977–7989

    Article  Google Scholar 

  28. Mitchell GR, Windle AH (1982) Structural analysis of an oriented liquid crystalline copolyester. Polymer 23:1269–1272

    Article  Google Scholar 

  29. Mullaney PF, Dean PN (1970) The small-angle light scattering of biological cells. Biophys J 10:764–772

    Article  Google Scholar 

  30. Neffe AT, Hanh BD, Steuer S, Lendlein A (2009) Polymer networks combining controlled drug release, biodegradation, and shape memory capability. Adv Mater 21:3394–3398

    Article  Google Scholar 

  31. Nishida K, Ogawa H, Matsuba G, Konishi T, Kanaya T (2008) A high-resolution small-angle light scattering instrument for soft matter studies. J Appl Cryst 41:723–728

    Article  Google Scholar 

  32. Nochel U, Kratz K, Behl M, Lendlein A (2015) Relation between nanostructural changes and macroscopic effects during reversible temperature-memory effect under stress-free conditions in semicrystalline polymer networks. In: MRS symposium proceedings, vol 1718. https://doi.org/10.1557/opl.2015.427

  33. Ran S, Fang D, Zong X, Hsiao BS, Chu B, Cunniff PM (2001) Structural changes during deformation of Kevlar fibers via on-line synchrotron SAXS/WAXS techniques. Polymer 42:1601–1612

    Article  Google Scholar 

  34. Rhodes MB, Stein RS (1961) Light scattering study of the annealing of drawn polyethylene. J Appl Phys 32:2344–2352

    Article  Google Scholar 

  35. Romo-Uribe A (2001) On the molecular orientation and viscoelastic behaviour of liquid crystalline polymers. The influence of macromolecular architecture. Proc R Soc Lond A 457:207–229

    Article  Google Scholar 

  36. Romo-Uribe A (2001) Smectic-like order in the log-rolling flow of thermotropic random copolymers. A time-resolved wide-angle X-ray scattering study. Proc R Soc Lond A 457:1327–1342

    Article  Google Scholar 

  37. Romo-Uribe A (2007) Hybrid-block copolymer nanocomposites. characterization of nanostructure by small-angle X-ray scattering (SAXS). Rev Mex Fis 53:171–178

    Google Scholar 

  38. Romo-Uribe A, Albanil L (2018) Dynamics retardation in hybrid POSS-NIPAm nanocomposites. Thermoplastic and thermally-responsive hydrogel behavior. Eur Polym J 99:350–360

    Article  Google Scholar 

  39. Romo-Uribe A, Manzur A, Olayo R (2012) Synchrotron small-angle X-ray scattering study of linear low density polyethylene under uniaxial deformation. J Mater Res 27:1351–1359

    Article  Google Scholar 

  40. Romo-Uribe A, Reyes-Mayer A, Calixto-Rodriguez M, Benavente R, Jaffe M (2018) Synchrotron scattering and thermo-mechanical properties of high performance thermotropic polymer. A multi-scale analysis and structure-property correlation. Polymer 153:408–421

    Article  Google Scholar 

  41. Romo-Uribe A (2007) Long-range orientation correlations and molecular alignment in sheared thermotropic copolyester. In-situ light and X-ray scattering. Polym Adv Techn 18(7):503–512

    Article  Google Scholar 

  42. Romo-Uribe A, Mather PT, Chaffee K, Han CD (1997) Molecular and textural ordering of thermotropic polymers in shear flow. In: MRS symposium proceedings, vol 461, pp 63–68

    Google Scholar 

  43. Romo-Uribe A, Windle AH (1996) Log-rolling alignment in main-chain thermotropic liquid crystalline polymers: An in-situ WAXS study, Macromolecules 29 :6246–6255

    Article  Google Scholar 

  44. Rousseau IA, Mather PT (2003) Shape memory effect exhibited by smectic-C liquid crystalline elastomers. J Am Chem Soc 125(50):15300–15301

    Article  Google Scholar 

  45. Rousseau IA, Qin H, Mather PT (2005) Tailored phase transitions via mixed-mesogen liquid crystalline polymers with silicon-based spacers. Macromolecules 38:4103–4113

    Article  Google Scholar 

  46. Rousseau IA (2004) University of Connecticut PhD thesis, Development of soft polymeric networks showing actuation behavior: from hydrogels to liquid crystalline elastomers

    Google Scholar 

  47. Ruland W (1961) X-ray determination of crystallinity and diffuse disorder scattering. Acta Cryst 14:1180–1185

    Article  Google Scholar 

  48. Ryan AJ (1993) Simultaneous small-angle X-ray scattering and wide-angle X-ray diffraction. A powerful new technique for thermal analysis. J Therm Anal 40:887–899

    Article  Google Scholar 

  49. Sakurai S, Izumitani T, Hasegawa H, Hashimoto T, Han CC (1991) Small-angle neutron scattering and light scattering study on the miscibility of poly(styrene-ran-butadiene)/polybutadiene blends. Macromolecules 24:4844–4851

    Article  Google Scholar 

  50. Samuels RJ (1966) Structured polymers. Wiley, New York

    Google Scholar 

  51. Santiago D, Fernandez-Franco X, Ferrando F, de la Flor S (2015) Shape memory effect in hyperbranched poly(ethyleneimine)-modified epoxy thermosets. J Polym Sci Polym Phys. https://doi.org/10.1002/polb.23717

    Article  Google Scholar 

  52. Sawyer LC, Grubb DT (1987) Polymer microscopy. Chapman and Hall, New York

    Book  Google Scholar 

  53. Soto-Quintero A, Meneses-Acosta A, Romo-Uribe A (2015) Tailoring the viscoelastic, swelling kinetics and antibacterial behavior of poly(ethylene-glycol)-based hydrogels with polycaprolactone. Eur Polym J 70:1–17

    Article  Google Scholar 

  54. Statton WO (1959) Directional ‘crystallization’ of polymers. Ann N Y Acad Sci 83:27–36

    Article  Google Scholar 

  55. Stein RS (1964) In: Ke B (ed) Newer methods of polymer characterization. Interscience Publishers, New York, p 155

    Google Scholar 

  56. Thomsen DL III, Keller P, Daciri J, Pink R, Jeon H, Shenoy D, Ratna BR (2001) Liquid crystal elastomers with mechanical properties of a muscle. Macromolecules 34:5868–5875

    Article  Google Scholar 

  57. Torbati AH, Birjandi Nejad H, Ponce M, Sutton JP, Mather PT (2014) Properties of triple shape memory composites prepared via polymerization-induced phase separation. Soft Matter 10:3112–3121

    Article  Google Scholar 

  58. Vainshtein BK (1966) Diffraction of X-rays by chain molecules. Elsevier, Amsterdam

    Google Scholar 

  59. Wang K, Jia Y-G, Zhu XX (2017) Two-way reversible shape memory polymers made of cross-linked cocrystallizable random copolymers with tunable actuation temperatures. Macromolecules 50(21):8570–8579

    Article  Google Scholar 

  60. Wilke W, Bratrich M, Heise B, Peichel G (1992) The change of the superstructure of semicrystalline polymers during deformation: results from small-angle scattering with synchrotron radiation. Polym Adv Technol 3:179–190

    Article  Google Scholar 

  61. Xie T, Rousseau IA (2009) Facile tailoring of thermal transition temperatures of epoxy shape memory polymers. Polymer 50:1852–1856

    Article  Google Scholar 

  62. Yang Z, Song F, Wang Q, Wang T (2016) Shape memory induced structural evolution of high performance copolyamides. J Polym Sci A Polym Chem 54:3858–3867

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angel Romo-Uribe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Romo-Uribe, A. (2020). Scattering and Other Miscellanies Techniques for the Characterization of Shape Memory Polymers. In: Parameswaranpillai, J., Siengchin, S., George, J., Jose, S. (eds) Shape Memory Polymers, Blends and Composites. Advanced Structured Materials, vol 115. Springer, Singapore. https://doi.org/10.1007/978-981-13-8574-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8574-2_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8573-5

  • Online ISBN: 978-981-13-8574-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics