Skip to main content

Optical, Electrical, and Magnetic Properties of Shape-Memory Polymers, Polymer Blends, and Composites

  • Chapter
  • First Online:
Shape Memory Polymers, Blends and Composites

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 115))

Abstract

The polymeric shape-memory materials, which generally trigger the shape-memory effect (SME) via direct heating, have been the rising star in the field of smart materials. Recently, numerous efforts have been paid to explore the alternative methods for realizing SME by indirect actuation, for further extending the practical application. Incorporation of functional groups or/and fillers is the most convenient route to endow the shape-memory matrix with enhanced properties of inductive heating, which has been rapidly developed to achieve new stimulus-responsive behavior. Herein, the novel functions of the shape-memory polymers, polymer blends, and composites including optical, electrical, and magnetic properties will be introduced. Moreover, the operative mechanism and optimization method of the different properties will be substantially discussed considering the composition change, morphology control, and structure design as well as the filler type, concentration, and dispersion. Finally, an outlook is presented describing the future challenges of this promising field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hu JL, Zhu Y, Huang HH, Lu J (2012) Recent advances in shape–memory polymers: structure, mechanism, functionality, modeling and application. Prog Polym Sci 37:1720–1763

    Article  Google Scholar 

  2. Zhao Q, Qi HJ, Xie T (2015) Recent progress in shape memory polymer: new behavior, enabling materials, and mechanistic understanding. Prog Polym Sci 49–50:79–120

    Article  Google Scholar 

  3. Martin Hager MD, Bode S, Weber C, Schubert US (2015) Shape memory polymers: past, present and future developments. Prog Polym Sci 49–50:3–33

    Article  Google Scholar 

  4. Liu YJ, Lv HB, Lan X, Leng JS, Du SY (2009) Review of electro-active shape-memory polymer composite. Compos Sci Technol 69:2064–2068

    Article  Google Scholar 

  5. Leng JS, Lan X, Liu YJ, Du SY (2011) Shape-memory polymers and their composites: stimulus methods and applications. Prog Mater Sci 56:1077–1135

    Article  Google Scholar 

  6. Meng H, Li GQ (2013) A review of stimuli-responsive shape memory polymer composites. Polymer 54:2199–2221

    Article  Google Scholar 

  7. Mu T, Liu LW, Lan X, Liu YJ, Leng JS (2018) Shape memory polymers for composites. Compos Sci Technol 160:169–198

    Article  Google Scholar 

  8. Liu TZ, Zhou TY, Yao YT, Zhang FH, Liu LW, Liu YJ, Leng JS (2018) Stimulus methods of multi-functional shape memory polymer nanocomposites: a review. Compos A 100:20–30

    Article  Google Scholar 

  9. Habault D, Zhang HJ, Zhao Y (2013) Light-triggered self-healing and shape-memory polymers. Chem Soc Rev 42:7244–7256

    Article  Google Scholar 

  10. Li HM, Keller P, Li B, Wang XG, Brunet M (2003) Light-driven side-on nematic elastomer actuators. Adv Mater 15:7–8

    Google Scholar 

  11. Ikeda T, Mamiya JI, Yu YL (2007) Photomechanics of liquid-crystalline elastomers and other polymers. Angew Chem Int Ed 46:506–528

    Article  Google Scholar 

  12. Pei ZQ, Yang Y, Chen QM, Terentjev EM, Wei Y, Ji Y (2014) Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds. Nat Mater 13:36–41

    Article  Google Scholar 

  13. Liu YJ, Du HY, Liu LW, Leng JS (2014) Shape memory polymers and their composites in aerospace applications: a review. Smart Mater Struct 23:023001

    Article  Google Scholar 

  14. Li CH, Hodgins P, Peterson GP (2010) Experimental study of fundamental mechanisms in inductive heating of ferromagnetic nanoparticles suspension (Fe3O4 iron oxide ferrofluid). J Appl Phys 110:054303

    Article  Google Scholar 

  15. Heuchel M, Razzaq MY, Kratz K, Behl M, Lendlein A (2015) Modeling the heat transfer in magneto-sensitive shape-memory polymer nanocomposites with dynamically changing surface area to volume ratios. Polymer 65:215–222

    Article  Google Scholar 

  16. Razzaq MY, Behl M, Lendlein A (2012) Memory-effects of magnetic nanocomposites. Nanoscale 4:6181–6195

    Google Scholar 

  17. Gass J, Poddar P, Almand J, Srinath S, Srikanth H (2006) Superparamagnetic polymer nanocomposites with uniform Fe3O4 nanoparticle dispersions. Adv Funct Mater 16:71–75

    Article  Google Scholar 

  18. Kalia S, Kango S, Kumar A, Haldorai Y, Kumari B, Kumar R (2014) Magnetic polymer nanocomposites for environmental and biomedical applications. Colloid Polym Sci 292:2025–2052

    Article  Google Scholar 

  19. Lendlein A, Jiang HY, Jünger O, Langer R (2005) Light-induced shape-memory polymers. Nature 434:879–882

    Article  Google Scholar 

  20. Wu LB, Jin CL, Sun XY (2011) Synthesis, properties, and light-induced shape memory effect of multiblock polyesterurethanes containing biodegradable segments and pendant cinnamamide groups. Biomacromolecules 12:235–241

    Article  Google Scholar 

  21. Xie H, He MJ, Deng XY, Du L, Fan CJ, Yang KK, Wang YZ (2016) Design of poly(l-lactide)-poly(ethylene glycol) copolymer with light-induced shape-memory effect triggered by pendant anthracene groups. ACS Appl Mater Interfaces 8:9431–9439

    Article  Google Scholar 

  22. Yu YL, Nakano M, Ikeda T (2003) Directed bending of a polymer film by light. Nature 425:145

    Article  Google Scholar 

  23. Yamada M, Kondo M, Mamiya JI, Yu YL, Kinoshita M, Barrett CJ, Ikeda T (2008) Photomobile polymer materials: towards light-driven plastic motors. Angew Chem Int Ed 47:4986–4988

    Article  Google Scholar 

  24. Lee KM, Koerner H, Vaia RA, Bunning TJ, White TJ (2011) Light-activated shape memory of glassy, azobenzene liquid crystalline polymer networks. Soft Matter 7:4318–4324

    Article  Google Scholar 

  25. White TJ, Tabiryan NV, Serak SV, Hrozhyk UA, Tondiglia VP, Koerner H, Vaia RA, Bunning TJ (2008) A high frequency photodriven polymer oscillator. Soft Matter 4:1796–1798

    Article  Google Scholar 

  26. White TJ, Serak SV, Tabiryan NV, Vaiaa RA, Bunning TJ (2009) Polarization-controlled, photodriven bending in monodomain liquid crystal elastomer cantilevers. J Mater Chem 19:1080–1085

    Article  Google Scholar 

  27. Serak S, Tabiryan N, Vergara R, White TJ, Vaia RA, Bunning TJ (2010) Liquid crystalline polymer cantilever oscillators fueled by light. Soft Matter 6:779–783

    Article  Google Scholar 

  28. Kumpfer JR, Rowan SJ (2011) Thermo-, photo-, and chemo-responsive shape-memory properties from photo-cross-linked metallo-supramolecular polymers. J Am Chem Soc 133:12866–12874

    Article  Google Scholar 

  29. Michal BT, McKenzie BM, Felder SE, Rowan SJ (2015) Metallo-, thermo-, and photoresponsive shape memory and actuating liquid crystalline elastomers. Macromolecules 48:3239–3246

    Article  Google Scholar 

  30. Koerner H, Price G, Pearce NA, Alexander M, Vaia RA (2004) Remotely actuated polymer nanocomposites-stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nat Mater 3:115

    Article  Google Scholar 

  31. Liang JJ, Xu YF, Huang Y, Zhang L, Wang Y, Ma FF, Li FF, Guo TY, Chen YS (2009) Infrared-triggered actuators from graphene-based nanocomposites. J Phys Chem C 113:9921–9927

    Article  Google Scholar 

  32. Leng JS, Wu XL, Liu YJ (2009) Infrared light-active shape memory polymer filled with nanocarbon particles. J Appl Polym Sci 114:2455–2460

    Article  Google Scholar 

  33. Feng YY, Qin MM, Guo HQ, Yoshino K, Feng W (2013) Infrared-actuated recovery of polyurethane filled by reduced graphene oxide/carbon nanotube hybrids with high energy density. ACS Appl Mater Interfaces 5:10882–10888

    Article  Google Scholar 

  34. Lu HB, Yao YT, Huang WM, Leng JS, Hui D (2014) Significantly improving infrared light-induced shape recovery behavior of shape memory polymeric nanocomposite via a synergistic effect of carbon nanotube and boron nitride. Compos B 62:256–261

    Article  Google Scholar 

  35. Thakur S, Karak NJ (2015) Tuning of sunlight-induced self-cleaning and selfhealing attributes of an elastomeric nanocomposite by judicious compositional variation of the TiO2-reduced graphene oxide nanohybrid. J Mater Chem A 3:12334–12342

    Article  Google Scholar 

  36. Yu L, Wang Q, Sun J, Li CY, Zou C, He ZM, Wang ZD, Zhou L, Zhang LY, Yang H (2015) Multi-shape-memory effects in a wavelength-selective multicomposite. J Mater Chem A 3:13953–13961

    Article  Google Scholar 

  37. Hribar KC, Metter RB, Ifkovits JL, Troxler T, Burdick JA (2009) Light-induced temperature transitions in biodegradable polymer and nanorod composites. Small 5:1830–1834

    Article  Google Scholar 

  38. Zhang HJ, Zhang JM, Tong X, Ma DL, Zhao Y (2013) Light polarization-controlled shape-memory polymer/gold nanorod composite. Macromol Rapid Commun 34:1575–1579

    Article  Google Scholar 

  39. Zhang HJ, Zhao Y (2013) Polymers with dual light-triggered functions of shape memory and healing using gold nanoparticles. ACS Appl Mater Interfaces 5:13069–13075

    Article  Google Scholar 

  40. Zhang HJ, Xia HS, Zhao Y (2014) Light-controlled complex deformation and motion of shape memory polymers using a temperature gradient. ACS Macro Lett 3:940–943

    Article  Google Scholar 

  41. Shibaev V, Bobrovsky A, Boiko N (2003) Photoactive liquid crystalline polymer systems with light-controllable structure and optical properties. Prog Polym Sci 28:729–835

    Article  Google Scholar 

  42. Pucci A, Bizzarri R, Ruggeri G (2011) Polymer composites with smart optical properties. Soft Matter 7:3689–3700

    Article  Google Scholar 

  43. Wu WB, Tang RL, Li QQ, Li Z (2015) Functional hyperbranched polymers with advanced optical, electrical and magnetic properties. Chem Soc Rev 44:3997–4022

    Article  Google Scholar 

  44. Zheng YW, Li J, Lee E, Yang S (2015) Light-induced shape recovery of deformed shape memory polymer micropillar arrays with gold nanorods. RSC Adv 5:30495–30499

    Article  Google Scholar 

  45. Wu ZL, Wang ZJ, Keller P, Zheng Q (2016) Light responsive microstructured surfaces of liquid crystalline network with shape memory and tunable wetting behaviors. Macromol Rapid Commun 37:311–317

    Article  Google Scholar 

  46. Xu HX, Yu CJ, Wang SD, Malyarchuk V, Xie T, Rogers JA (2013) Deformable, programmable, and shape-memorizing micro-optics. Adv Funct Mater 23:3299–3306

    Article  Google Scholar 

  47. Li ZP, Black T, Rahman MA, Feng JX, Olah A, Baer E (2018) Opto-mechanical programming of micro-scale information on transparent multilayer shape memory film. Polymer 137:156–168

    Article  Google Scholar 

  48. Schauer S, Meier T, Reinhard M, Röhrig M, Schneider M, Heilig M, Kolew A, Worgull M, Hölscher H (2016) Tunable diffractive optical elements based on shape-memory polymers fabricated via hot embossing. ACS Appl Mater Interfaces 8:9423–9430

    Article  Google Scholar 

  49. Girifalco LA, Hodak M, Lee RS (2000) Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Phys Rev B 62:13104

    Article  Google Scholar 

  50. Fei GX, Li G, Wu LS, Xia HS (2012) A spatially and temporally controlled shape memory process for electrically conductive polymer-carbon nanotube composites. Soft Matter 8:5123–5126

    Article  Google Scholar 

  51. Cho JW, Kim JW, Jung YC, Goo NS (2005) Electroactive shape-memory polyurethane composites incorporating carbon nanotubes. Macromol Rapid Commun 26:412–416

    Article  Google Scholar 

  52. Raja M, Ryu SH, Shanmugharaj AM (2013) Thermal, mechanical and electroactive shape memory properties of polyurethane (PU)/poly (lactic acid) (PLA)/CNT nanocomposites. Eur Polym J 49:3492–3500

    Article  Google Scholar 

  53. Raja M, Ryu SH, Shanmugharaj AM (2014) Influence of surface modified multiwalled carbon nanotubes on the mechanical and electroactive shape memory properties of polyurethane (PU)/poly(vinylidene diflouride) (PVDF) composites. Colloids Surf A 450:59–66

    Article  Google Scholar 

  54. Mahapatra SS, Yadav SK, Yoo HJ, Ramasamy MS, Cho JW (2014) Tailored and strong electro-responsive shape memory actuation in carbon nanotube-reinforced hyperbranched polyurethane composites. Sens Actuators B 193:384–390

    Article  Google Scholar 

  55. Deng H, Lin L, Ji MZ, Zhang SM, Yang MB, Fu Q (2014) Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials. Prog Polym Sci 39:627–655

    Article  Google Scholar 

  56. Wang ZW, Zhao J, Chen M, Yang M, Tang LY, Dang ZW, Chen FH, Huang MM, Dong X (2014) Dually actuated triple shape memory polymers of cross-linked polycyclooctene-carbon nanotube/polyethylene nanocomposite. ACS Appl Mater Interfaces 6:20051–20059

    Article  Google Scholar 

  57. Qi XD, Dong P, Liu ZW, Liu TY, Fu Q (2016) Selective localization of multi-walled carbon nanotubes in bi-component biodegradable polyester blend for rapid electroactive shape memory performance. Compos Sci Technol 125:38–46

    Article  Google Scholar 

  58. Liu TY, Huang R, Qi XD, Dong P, Fu Q (2017) Facile preparation of rapidly electro-active shape memory thermoplastic polyurethane/polylactide blends via phase morphology control and incorporation of conductive fillers. Polymer 114:28–35

    Article  Google Scholar 

  59. Zhang ZX, Wang WY, Yang JH, Zhang N, Huang T, Wang Y (2016) Excellent electroactive shape memory performance of EVA/PCL/CNT blend composites with selectively localized CNTs. J Phys Chem C 120:22793–22802

    Article  Google Scholar 

  60. Qi XD, Xiu H, Wei Y, Zhou Y, Guo YL, Huang R, Bai HW, Fu Q (2017) Enhanced shape memory property of polylactide/thermoplastic poly(ether)urethane composites via carbon black self-networking induced co-continuous structure. Compos Sci Technol 139:8–16

    Article  Google Scholar 

  61. Chen XQ, Saito T, Yamada TH, Matsushige K (2001) Aligning single-wall carbon nanotubes with an alternating-current electric field. Appl Phys Lett 78:3714

    Article  Google Scholar 

  62. Martina CA, Sandlera JKW, Windlea AH, Schwarzb MK, Bauhoferb W, Schultec K, Shafferd MSP (2005) Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites. Polymer 46:877–886

    Article  Google Scholar 

  63. Leng JS, Lan X, Liu YJ, Du SY, Huang WM, Liu N, Phee SJ, Yuan Q (2008) Electrical conductivity of thermoresponsive shape-memory polymer with embedded micron sized Ni powder chains. Appl Phys Lett 92:014104

    Article  Google Scholar 

  64. Leng JS, Huang WM, Lan X, Liu YJ, Du SY (2008) Significantly reducing electrical resistivity by forming conductive Ni chains in a polyurethane shape-memory polymer/carbon-black composite. Appl Phys Lett 92:204101

    Article  Google Scholar 

  65. Yu K, Zhang ZC, Liu YJ, Leng JS (2011) Carbon nanotube chains in a shape memory polymer/carbon black composite: to significantly reduce the electrical resistivity. Appl Phys Lett 98:074102

    Article  Google Scholar 

  66. Lu HB, Liu YJ, Gou JH, Leng JS, Du SY (2010) Synergistic effect of carbon nanofiber and carbon nanopaper on shape memory polymer composite. Appl Phys Lett 96:084102

    Article  Google Scholar 

  67. Lu HB, Liu YJ, Gou JH, Leng JS, Du SY (2011) Surface coating of multi-walled carbon nanotube nanopaper on shape-memory polymer for multifunctionalization. Compos Sci Technol 71:1427–1434

    Article  Google Scholar 

  68. Wang WX, Liu DY, Liu YJ, Leng JS, Bhattacharyya D (2015) Electrical actuation properties of reduced graphene oxide paper/epoxy-based shape memory composites. Compos Sci Technol 106:20–24

    Article  Google Scholar 

  69. Luo HS, Li ZW, Yi GB, Zu XH, Wang H, Wang YJ, Huang HL, Hu JW, Liang ZF, Zhong BB (2014) Electro-responsive silver nanowire-shape memory polymer composites. Mater Lett 134:172–175

    Article  Google Scholar 

  70. Wang X, Sparkman J, Gou JH (2017) Electrical actuation and shape memory behavior of polyurethane composites incorporated with printed carbon nanotube layers. Compos Sci Technol 141:8–15

    Article  Google Scholar 

  71. Mayer G (2005) Rigid biological systems as models for synthetic composites. Science 310:1144–1147

    Article  Google Scholar 

  72. Chen PY, Lin AYM, Stokes AG, Seki Y, Bodde SG, McKittrick J, Meyers MA (2008) Structural biological materials: overview of current research. JOM-US 60:23–32

    Article  Google Scholar 

  73. Lu HB, Huang WM, Leng JS (2014) Functionally graded and self-assembled carbon nanofiber and boron nitride in nanopaper for electrical actuation of shape memory nanocomposites. Compos B 62:1–4

    Article  Google Scholar 

  74. Lu HB, Liang F, Gou JH, Huang WM, Jinsong Leng JS (2014) Synergistic effect of self-assembled carbon nanopaper and multi-layered interface on shape memory nanocomposite for high speed electrical actuation. J Appl Phys 115:064907

    Article  Google Scholar 

  75. Madbouly SA, Lendlein A (2010) Shape-memory polymers. Springer, Berlin Heidelberg

    Google Scholar 

  76. Mohr R, Kratz K, Weigel T, Lucka-Gabor M, Moneke M, Lendlein A (2006) Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. Proc Natl Acad Sci USA 103:3540–3545

    Article  Google Scholar 

  77. Zheng XT, Zhou SB, Xiao Y, Yu XJ, Li XJ, Wu PZ (2009) Shape memory effect of poly(d, l-lactide)/Fe3O4 nanocomposites by inductive heating of magnetite particles. Colloids Surf B 71:67–72

    Article  Google Scholar 

  78. Gao YL, Zhu GM, Xu SG, Ma TT, Nie J (2018) Biodegradable magnetic-sensitive shape memory poly(ε-caprolactone)/Fe3O4 nanocomposites. J Appl Polym Sci 135:45652

    Article  Google Scholar 

  79. Kumar UN, Kratz K, Wagermaier W, Behl M, Lendlein A (2010) Non-contact actuation of triple-shape effect in multiphase polymer network nanocomposites in alternating magnetic field. J Mater Chem 20:3404–3415

    Article  Google Scholar 

  80. Kumar UN, Kratz K, Behl M, Lendlein A (2011a) Shape-memory properties of magnetically active triple-shape nanocomposites based on a grafted polymer network with two crystallizable switching segments. eXPRESS Polym Lett 6:26–40

    Google Scholar 

  81. Zhang FH, Zhang ZC, Liu YJ, Lu HB, Leng JS (2013) The quintuple-shape memory effect in electrospun nanofiber membranes. Smart Mater Struct 22:085020

    Article  Google Scholar 

  82. Zhang FH, Zhang ZC, Luo CJ, Lin IT, Liu YJ, Leng JS, Smoukov SK (2015) Remote, fast actuation of programmable multiple shape memory composites by magnetic fields. J Mater Chem C 3:11290–11293

    Article  Google Scholar 

  83. Du L, Xu ZY, Fan CJ, Xiang G, Yang KK, Wang YZ (2018) A fascinating metallo-supramolecular polymer network with thermal/magnetic/light-responsive shape-memory effects anchored by Fe3O4 nanoparticles. Macromolecules 51:705–715

    Article  Google Scholar 

  84. Stauffer PR, Cetas TC, Fletcher AM, Young DW, Dewhirst MW, Oleson JR, Roemer RB (1984) Observations on the use of ferromagnetic implants for inducing hyperthermia. IEEE Trans Biomed Eng 31:76–90

    Article  Google Scholar 

  85. Goldman A (1990) Modern ferrite technology. Van Nostrand Reinhold, New York

    Google Scholar 

  86. Buckley PR, McKinley GH, Wilson TS, Small W, Benett WJ, Bearinger JP, McElfresh MW, Maitland DJ (2006) Inductively heated shape memory polymer for the magnetic actuation of medical devices. IEEE Trans Biomed Eng 53:2075–2083

    Article  Google Scholar 

  87. Kumar UN, Kratz K, Heuchel M, Behl M, Lendlein A (2011) Shape-memory nanocomposites with magnetically adjustable apparent switching temperatures. Adv Mater 23:4157–4162

    Article  Google Scholar 

  88. Herbert KM, Schrettl S, Rowan SJ, Weder C (2017) 50th anniversary perspective: solid-state multistimuli, multiresponsive polymeric materials. Macromolecules 50:8845–8870

    Article  Google Scholar 

  89. Zheng Y, Dong RQ, Shen JB, Guo SY (2016) Tunable shape memory performances via multilayer assembly of thermoplastic polyurethane and polycaprolactone. ACS Appl Mater Interfaces 8:1371–1380

    Article  Google Scholar 

  90. Zheng Y, Ji XY, Yin M, Shen JB, Guo SY (2017) Strategy for fabricating multiple-shape-memory polymeric materials via the multilayer assembly of co-continuous blends. ACS Appl Mater Interfaces 9:32270–32279

    Article  Google Scholar 

  91. Gao WL, Zheng Y, Shen JB, Guo SY (2015) Electrical properties of polypropylene-based composites controlled by multilayered distribution of conductive particles. ACS Appl Mater Interfaces 7:1541–1549

    Article  Google Scholar 

  92. Zhu JM, Shen JB, Guo SY, Sue HJ (2015) Confined distribution of conductive particles in polyvinylidene fluoride-based multilayered dielectrics: toward high permittivity and breakdown strength. Carbon 84:355–364

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiabin Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zheng, Y., Shen, J., Guo, S. (2020). Optical, Electrical, and Magnetic Properties of Shape-Memory Polymers, Polymer Blends, and Composites. In: Parameswaranpillai, J., Siengchin, S., George, J., Jose, S. (eds) Shape Memory Polymers, Blends and Composites. Advanced Structured Materials, vol 115. Springer, Singapore. https://doi.org/10.1007/978-981-13-8574-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8574-2_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8573-5

  • Online ISBN: 978-981-13-8574-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics