Skip to main content

Introduction to Shape-Memory Polymers, Polymer Blends and Composites: State of the Art, Opportunities, New Challenges and Future Outlook

  • Chapter
  • First Online:
Shape Memory Polymers, Blends and Composites

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 115))

Abstract

This chapter provides an overview of shape-memory polymers and their blends and composites. The history of shape-memory polymers, their advantages, shape-memory cycles, classification and the molecular mechanism of the shape-memory effect are briefly discussed. The characterisation techniques such as dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), transmission electron microscopy (TEM), optical and polarized optical microscopy (OM and POM), atomic force microscopy (AFM), laser scanning confocal microscopy (LSCM), universal testing machine (UTM), nanoindentation technique, etc., are powerful techniques to investigate the shape-memory mechanism and shape-memory performance. Shape-memory polymers have myriad of potential applications in automobile, sports products and textile, aerospace and medical fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lendlein A, Langer R (2002) Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296:1673–1676

    Article  Google Scholar 

  2. Lendlein A, Kelc S (2002) Shape-memory polymer. Angew Chem 41:2034–2057

    Article  Google Scholar 

  3. Behl M, Lendlein A (2007) Shape-memory polymers. Mater Today 10:20–28

    Article  Google Scholar 

  4. Mather PT, Luo X, Rousseau IA (2009) Shape memory polymer research. Annu Rev Mater Res 39:445–471

    Article  Google Scholar 

  5. Huang WM, Ding Z, Wang CC, Wei J, Zhao Y, Purnawali H (2010) Shape memory materials. Mater Today 13:54–61

    Article  Google Scholar 

  6. Roussea IA (2008) Challenges of shape memory polymers: A review of the progress toward overcoming SMP’s limitations. Polym Eng Sci 48:2075–2089

    Article  Google Scholar 

  7. Ratna D, Karger-Kocsis J (2008) Recent advances in shape memory polymers and composites: a review. J Mater Sci 43:254–269

    Article  Google Scholar 

  8. Pretsch T (2010) Review on the functional determinants and durability of shape memory polymers. Polymers 2:120–158

    Article  Google Scholar 

  9. Behl M, Razzaq MY, Lendlein A (2010) Multifunctional shape-memory polymers. Adv Mater 22:3388–3410

    Article  Google Scholar 

  10. Xie T (2011) Recent advances in polymer shape memory. Polymer 52:4985–5000

    Article  Google Scholar 

  11. Leng J, Lan X, Liu Y, Du S (2011) Shape-memory polymers and their composites: stimulus methods and applications. Prog Mater Sci 56:1077–1135

    Article  Google Scholar 

  12. Hu J, Zhu Y, Huang H, Lu J (2012) Recent advances in shape–memory polymers: structure, mechanism, functionality, modeling and applications. Prog Polym Sci 37:1720–1763

    Article  Google Scholar 

  13. Serrano MC, Ameer GA (2012) Recent insights into the biomedical applications of shape-memory polymers. Macromol Biosci 12:1156–1171

    Article  Google Scholar 

  14. Zhao Q, Qi HJ, Xie T (2015) Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding. Prog Polym Sci 49–50:79–120

    Article  Google Scholar 

  15. Hager MD, Bode S, Weber C, Schubert US (2015) Shape memory polymers: past, present and future developments. Prog Polym Sci 49–50:3–33

    Article  Google Scholar 

  16. Yahia L (2015) Shape memory polymers for biomedical applications. Elsevier. https://doi.org/10.1016/C2013-0-16350-7

  17. Safranski DL, Griffis JC (2017) Shape-memory polymer device design. Elsevier

    Google Scholar 

  18. Pilate F, Toncheva A, Dubois P, Raquez JM (2016) Shape-memory polymers for multiple applications in the materials world. Eur Polym J 80:268–294

    Article  Google Scholar 

  19. Chang LC, Read TA (1951) Plastic deformation and diffusionless phase changes in metals—the gold-cadmium beta phase. JOM 3:47–52. https://doi.org/10.1007/BF03398954

    Article  Google Scholar 

  20. Lester B, Vernon B, Vernon HM (1941) Process of manufacturing articles of thermoplastic synthetic resins. US 2234993

    Google Scholar 

  21. Buehler WJ, Gilfrich JV, Wiley RC (1963) Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. J Appl Phys 34:1475–1477

    Article  Google Scholar 

  22. Duerig TW, Richter DF, Albrecht J (1982) Shape memory in Ti-10V-2Fe-3AI. Scr Metall 16:957–961

    Article  Google Scholar 

  23. Swain MV (1986) Shape memory behaviour in partially stabilized zirconia ceramics. Nature 322:234–236

    Article  Google Scholar 

  24. Duerig TW, Albrecht J, Gessinger GH (1982) A shape-memory alloy for high-temperature applications. JOM 34:14–20

    Article  Google Scholar 

  25. Huang W (2002) On the selection of shape memory alloys for actuators. Mater Des 23:11–19

    Article  Google Scholar 

  26. Ota S (1981) Current status of irradiated heat-shrinkable tubing in Japan. Radiat Phys Chem 18:81–87

    Google Scholar 

  27. Parameswaranpillai J, Siengchin S (2017) Shape memory polymers, KMUTNB. Int J Appl Sci Technol 10(2):77

    Google Scholar 

  28. Hirai T, Maruyama H, Suzuki T, Hayashi S (1992) Shape memorizing properties of a hydrogel of poly (vinyl alcohol). J Appl Polym Sci 45:1849–1855

    Article  Google Scholar 

  29. Hirai T, Maruyama H, Suzuki T, Hayashi S (1992) Effect of chemical cross-linking under elongation on shape restoring of poly(vinyl alcohol) hydrogel. J Appl Polym Sci 46:1449–1451

    Article  Google Scholar 

  30. Kim BK, Lee SY, Xu M (1996) Polyurethanes having shape memory effects. Polymer 37:5781–5793

    Article  Google Scholar 

  31. Takahashi T, Hayashi N, Hayashi S (1996) Structure and properties of shape-memory polyurethane block copolymer. J Appl Polym Sci 60:1061–1069

    Article  Google Scholar 

  32. Li F, Zhang X, Hou J, Xu M, Luo X, Ma D, Kim BK (1997) Studies on thermally stimulated shape memory effect of segmented polyurethanes. J Appl Polym Sci 64:1511–1516

    Article  Google Scholar 

  33. Lin JR, Chen LW (1998) Study on shape-memory behavior of polyether-based polyurethanes. I. Influence of the hard-segment content. J Appl Polym Sci 69:1563–1574

    Article  Google Scholar 

  34. Lin JR, Chen LW (1998) Study on shape-memory behavior of polyether-based polyurethanes. II. Influence of soft-segment molecular weight. J Appl Polym Sci 69:1575–1586

    Article  Google Scholar 

  35. Osada Y, Matsuda A (1995) Shape memory in hydrogels. Nature 376:219–220

    Article  Google Scholar 

  36. Liu Y, Gall K, Dunn ML, Greenberg AR, Diani J (2006) Thermomechanics of shape memory polymers: uniaxial experiments and constitutive modelling. Int J Plasticity 22:279–313

    Article  MATH  Google Scholar 

  37. Parameswaranpillai J, Sreekanth PM, Jose S, Siengchin S, Magueresse A, Janke A, Pionteck J (2017) Shape memory properties of epoxy/PPO-PEO-PPO triblock copolymer blends with tunable thermal transitions and mechanical characteristics. Ind Eng Chem Res 56(47):14069–14077

    Article  Google Scholar 

  38. Parameswaranpillai J, Ramanan SP, George JJ, Jose S, Zachariah AK, Siengchin S, Yorseng K, Janke A, Pionteck J (2018) PEG-ran-PPG modified epoxy thermosets: a simple approach to develop tough shape memory polymers. Ind Eng Chem Res 57(10):3583–3590

    Article  Google Scholar 

  39. Nagata N (1990) Development of polynorbornene-based shape- memory resins. Kagaku (Kyoto) 45:554–557

    Google Scholar 

  40. Jeon HG, Mather PT, Haddad TS (2000) Shape memory and nanostructure in poly(norbornyl-POSS) copolymers. Polym Int 49:453–457

    Article  Google Scholar 

  41. Lin JR, Chen LW (1999) Shape-memorized crosslinked ester-type polyurethane and its mechanical viscoelastic model. J Appl Polym Sci 73:1305–1319

    Article  Google Scholar 

  42. Chen W, Zhu C, Gu X (2002) Thermosetting polyurethanes with water-swollen and shape memory properties. J Appl Polym Sci 84:1504–1512

    Article  Google Scholar 

  43. Alteheld A, Feng Y, Kelch S, Lendlein A (2005) Biodegradable, amorphous copolyester urethane networks having shape-memory properties. Angew Chem Int Ed 44:1188–1192

    Article  Google Scholar 

  44. Lendlein A, Zotzmann J, Feng Y, Alteheld A, Kelch S (2009) Controlling the switching temperature of biodegradable, amorphous, shape-memory poly(rac-lactide)urethane networks by incorporation of different comonomers. Biomacromolecules 10:975–982

    Article  Google Scholar 

  45. Zotzmann J, Alteheld A, Behl M, Lendlein A (2009) Amorphous phase – segregated copoly(ether) esterurethane thermoset networks with oligo(propylene glycol) and oligo[(rac-lactide)-co-glycolide] segments: synthesis and characterization. J Mater Sci Mater Med 20:1815–1824

    Article  Google Scholar 

  46. Gall K, Dunn ML, Liu Y, Finch D, Lake M, Munshi NA (2002) Shape memory polymer nanocomposites. Acta Mater 50:5115–5126

    Article  Google Scholar 

  47. Beloshenko VA, Beygelzimer YE, Borzenko AP, Varyukhin VN (2002) Shape memory effect in the epoxy polymer–thermo expanded graphite system. Compos Part A Appl Sci Manuf 33:1001–1006

    Article  Google Scholar 

  48. Beloshenko VA, Beigelzimer YE, Borzenko AP, Varyukhin VN (2003) Shape-memory effect in polymer composites with a compactible filler. Mech Compos Mater 39:255–264

    Article  Google Scholar 

  49. Ken GL, Martin LD, McCluskey P (2003) Thermomechanical recovery couplings of shape memory polymers in flexure. Smart Mater Struct 12:947

    Article  Google Scholar 

  50. Zhu J, Fang G, Cao Z, Meng X, Ren H (2018) A self-folding dynamic covalent shape memory epoxy and its continuous glass fiber composite. Ind Eng Chem Res 57(15):5276–5281

    Article  Google Scholar 

  51. Tong TH (2004) Shape memory styrene copolymer. US Patent Grant US6759481B2

    Google Scholar 

  52. Shim YS, Chun BC, Chung Y-C (2006) Thermomechanical properties and shape memory effect of PET-PEG copolymers cross-linked with pentaerythritol. Fiber Polym 7:328–332

    Article  Google Scholar 

  53. Mather PT, Liu C (2003) Castable shape memory polymers, World Patent WO2003093341

    Google Scholar 

  54. Bertmer M, Buda A, Hofges IB, Kelch S, Lendlein A (2005) Biodegradable shape-memory polymer networks: characterization with solid-state NMR. Macromolecules 38:3793–3799

    Article  Google Scholar 

  55. Lendlein A, Schmidt AM, Langer R (2001) AB-polymer networks based on oligo(ɛ-caprolactone) segments showing shape-memory properties. Proc Natl Acad Sci USA 98:842–847

    Google Scholar 

  56. Liu C, Chun SB, Mather PT, Zheng L, Haley EH, Coughlin EB (2002) Chemically cross-linked polycyclooctene: synthesis, characterization, and shape memory behavior. Macromolecules 35:9868–9874

    Article  Google Scholar 

  57. Mather PT, Liu C, Coughlin EB, Chun SB (2004) Crosslinked polycyclooctene, US Patent US7173096B2

    Google Scholar 

  58. Rezanejad S, Kokabi M (2007) Shape memory and mechanical properties of cross-linked polyethylene/clay nanocomposites. Eur Polym J 43:2856–2865

    Article  Google Scholar 

  59. Zhao J, Chen M, Wang X, Zhao X, Wang Z, Dang Z, Ma L, Hu G, Chen F (2013) Triple shape memory effects of cross-linked polyethylene/polypropylene blends with cocontinuous architecture. ACS Appl Mater Interfaces 5(12):5550–5556

    Article  Google Scholar 

  60. Zhu G, Liang G, Xu Q, Yu Q (2003) Shape-memory effects of radiation crosslinked poly(ϵ-caprolactone). J Appl Polym Sci 90:1589–1595

    Article  Google Scholar 

  61. Lendlein A, Schmidt AM, Schroeter M, Langer R (2005) Shape-memory polymer networks from oligo(epsilon-caprolactone)dimethacrylates. J Polym Sci 43:1369–1381

    Article  Google Scholar 

  62. Lee KM, Knight PT, Chung T, Mather PT (2008) Polycaprolactone-POSS chemical/physical double networks. Macromolecules 41:4730–4738

    Article  Google Scholar 

  63. Zotzmann J, Behl M, Hofmann D, Lendlein A (2010) Reversible triple-shape effect of polymer networks containing polypentadecalactone- and poly(-caprolactone)-segments. Adv Mater 22:3424–3429

    Article  Google Scholar 

  64. Mya KY, Gose HB, Pretsch T, Bothe M, He C (2011) Star-shaped POSS-polycaprolactone polyurethanes and their shape memory performance. J Mater Chem 21:4827–4836

    Article  Google Scholar 

  65. Defize T, Riva R, Raquez JM, Dubois P, Jerome C, Alexandre M (2011) Thermoreversibly crosslinked poly(ε-caprolactone) as recyclable shape-memory polymer network. Macromol Rapid Commun 32:1264–1269

    Article  Google Scholar 

  66. Garle A, Kong S, Ojha U, Budhlall BM (2012) Thermoresponsive semicrystalline poly(ε-caprolactone) networks: exploiting cross-linking with cinnamoyl moieties to design polymers with tunable shape memory. Appl Mater Interfaces 4:645–657

    Article  Google Scholar 

  67. Pandini S, Passera S, Messori M, Paderni K, Toselli M, Gianoncelli A, Bontempi E, Riccò T (2012) Two-way reversible shape memory behaviour of crosslinked poly(ε-caprolactone). Polymer 53:1915–1924

    Article  Google Scholar 

  68. Pandini S, Baldi F, Paderni K, Messori M, Toselli M, Pilati F, Gianoncelli A, Brisotto M, Bontempi E, Riccò T (2015) One-way and two-way shape memory behaviour of semi-crystalline networks based on sol-gel cross-linked poly(ε-caprolactone). Polymer 54:4253–4265

    Article  Google Scholar 

  69. Dureamae I, Nishida M, Hirabayashi TN, Matsumura K, Kitano H (2016) Biodegradable shape memory polymers functionalized with anti-biofouling interpenetrating polymer networks. J Mater Chem B 4:5394–5404

    Article  Google Scholar 

  70. Tian G, Zhu G, Ren T, Liu Y, Wei K, Liu YX (2019) The effects of PCL diol molecular weight on properties of shape memory poly(ε-caprolactone) networks. J Appl Polym Sci 136:47055

    Article  Google Scholar 

  71. Kelch S, Steuer S, Schmidt AM, Lendlein A (2007) Shape–memory polymer networks from oligo[(ε-hydroxycaproate)-co-glycolate] dimethacrylates and butyl acrylate with adjustable hydrolytic degradation rate. Biomacromol 8:1018–1027

    Article  Google Scholar 

  72. Guo B, Chen Y, Lei Y, Zhang L, Zhou WY, Rabie ABM, Zhao J (2011) Biobased poly(propylene sebacate) as shape memory polymer with tunable switching temperature for potential biomedical applications. Biomacromol 12:1312–1321

    Article  Google Scholar 

  73. Ikematsu TK, Kishimoto Y, Miyamoto K (1990) Shape memory polymer resin, resin composition and shape-memorizing molded product therefrom. Europe Patent EP374961A2

    Google Scholar 

  74. Kitahara SN, Nigata N (1991) Novel crosslinked polymer having shape memorizing property, method of its use, and molded article having shape memory. US Patent, US, p 5043396A

    Google Scholar 

  75. Luo X, Zhang X, Wang M, Ma D, Xu M, Li F (1997) Thermally stimulated shape-memory behavior of ethylene oxide-ethylene terephthalate segmented copolymer. J Appl Polym Sci 64:2433–2440

    Article  Google Scholar 

  76. Wang M, Luo X, Ma D (1998) Dynamic mechanical behavior in the ethylene terephthalate-ethylene oxide copolymer with long soft segment as a shape memory material. Eur Polym J 34:1–5

    Article  Google Scholar 

  77. Wang M, Zhang L (1999) Recovery as a measure of oriented crystalline structure in poly(ether ester)s based on poly(ethylene oxide) and poly(ethylene terephthalate) used as shape memory polymers. J Polym Sci Part B Polym Phys 37:101–112

    Article  Google Scholar 

  78. Li F, Chen Y, Zhu W, Zhang X, Xu M (1998) Shape memory effect of polyethylene/nylon 6 graft copolymers. Polymer 39:6929–6934

    Article  Google Scholar 

  79. Jeong HM, Song JH, Chi KW, Kim I, Kim KT (2002) Shape memory effect of poly(methylene-1,3-cyclopentane) and its copolymer with polyethylene. Polym Int 51:275–280

    Article  Google Scholar 

  80. Langer RS, Lendlein A (2003) Biodegradable Shape Memory Polymeric Sutures. World Patent WO 2003088818 A2

    Google Scholar 

  81. Mather PT, Kim BS, Ge Q, Liu C (2004) Synthesis of nonionic telechelic polymers incorporating polyhedral oligosilsesquioxane and uses thereof. US Patent 2004024098

    Google Scholar 

  82. Mather PT, Kim BS, Ge Q, Liu C (2004) Preparation and Uses of Nonionic Telechelic Polymers Incorporating Polyhedral Oligosilsesquioxane (POSS). World Patent 2004011525

    Google Scholar 

  83. Campo CJ, Mather PT (2005) PVDF: PMMA shape memory blends: effect of short carbon fiber addition. Polym Mater Sci Eng 93:933–934

    Google Scholar 

  84. Zheng XT, Zhou SB, Li XH, Weng H (2006) Shape memory properties of poly(D, L-lactide)/hydroxyapatite composites. Biomaterials 27:4288–4295

    Article  Google Scholar 

  85. Zheng X, Zhou S, Yu X, Li X, Feng B, Qu S, Wenig J (2008) Effect of in vitro degradation of poly(D, L – lactide)/ β – tricalcium composite on its shape memory properties. J Biomed Mater Res B 86B:170–180

    Article  Google Scholar 

  86. Radjabian M, Kish MH, Mohammadi N (2012) Structure–property relationship for poly(lactic acid) (PLA) filaments: physical, thermomechanical and shape memory characterization. J Polym Res 19:9870

    Article  Google Scholar 

  87. Ferreroa SP, Fernandez J, Martın MMFS, barburu PAS, Oiz JRS (2016) The relevance of molecular weight in the design of amorphous biodegradable polymers with optimized shape memory effect. J Mech Behav Biomed Mater 61:541–553

    Google Scholar 

  88. Nagahama K, Ueda Y, Ouchi T, Ohya Y (2009) Biodegradable shape-memory polymers exhibiting sharp thermal transitions and controlled drug release. Biomacromol 10:1789–1794

    Article  Google Scholar 

  89. Ikematsu T, Kishimoto Y, Karaushi M (1990) Block copolymer bumpers with good shape memory. Japan Patent 02022355

    Google Scholar 

  90. Kim BK, Lee SY, Lee JS, Baek SH, Choi YJ, Lee JO, Xu M (1998) Polyurethane ionomers having shape memory effects. Polymer 39:2803–2808

    Article  Google Scholar 

  91. Jeong HM, Kim BK, Choi YJ (1999) Synthesis and properties of thermotropic liquid crystalline polyurethane elastomers. Polymer 41:1849–1855

    Article  Google Scholar 

  92. Li F, Qi L, Yang J, Xu M, Luo X, Ma D (2000) Polyurethane/conducting carbon black composites: structure, electric conductivity, strain recovery behavior, and their relationships. J Appl Polym Sci 75:68–77

    Article  Google Scholar 

  93. Kim BKS, Shin YJ, Cho SM, Jeong HM (2000) Shape-memory behavior of segmented polyurethanes with an amorphous reversible phase: the effect of block length and content. J Polym Sci Part B Polym Phys 38:2652–2657

    Article  Google Scholar 

  94. Lee BS, Chun BC, Chung YC, Sul KI, Cho JW (2001) Structure and thermomechanical properties of polyurethane block copolymers with shape memory effect. Macromolecules 34:6431–6437

    Article  Google Scholar 

  95. Ping P, Wang WS, Chen XS, Jing XB (2005) Poly(epsilon-caprolactone) polyurethane and its shape-memory property. Biomacromol 6:587–592

    Article  Google Scholar 

  96. Knight PT, Lee KM, Qin H, Mather PT (2008) Biodegradable thermoplastic polyurethanes incorporating polyhedral oligosilsesquioxane. Biomacromol 9:2458–2467

    Article  Google Scholar 

  97. Pretsch T, Jakob I, Müller W (2009) Hydrolytic degradation and functional stability of a segmented shape memory poly(ester urethane). Polym Degrad Stab 94:61–73

    Article  Google Scholar 

  98. Bothe M, Pretsch T (2012) Two-way shape changes of a shape-memory poly(ester urethane). Macromol Chem Phys 213:2378–2385

    Article  Google Scholar 

  99. Bothe M, Emmerling F, Pretsch T (2013) Poly(ester urethane) with varying polyester chain length: polymorphism and shape-memory behavior. Macromol Chem Phys 214:2683–2693

    Article  Google Scholar 

  100. Luo H, Liu Y, Yu Z, Zhang S, Li B (2008) Novel biodegradable shape memory material based on partial inclusion complex formation between r-Cyclodextrin and poly(E-caprolactone). Biomacromolecules 9:2573–2577

    Article  Google Scholar 

  101. Feng Y, Behl M, Kelch S, Lendlein A (2009) Biodegradable multiblock copolymers based on oligodepsipeptides with shape-memory properties. Macromol Biosci 9:45–54

    Article  Google Scholar 

  102. Zhang W, Chen L, Zhang Y (2009) Surprising shape-memory effect of polylactide resulted from toughening by polyamide elastomer. Polymer 50:1311–1315

    Article  Google Scholar 

  103. Xue L, Dai S, Li Z (2010) Biodegradable shape-memory block co-polymers for fast self-expandable stents. Biomaterials 31:8132–8140

    Article  Google Scholar 

  104. Momtaz M, Nouri MR, Barikani M (2014) Effect of block ratio and strain amplitude on thermal, structural, and shape memory properties of segmented polycaprolactone based polyurethanes. J Mater Sci 49:7575–7584

    Article  Google Scholar 

  105. Han S, Gu BH, Nam KH, Im SJ, Kim SC, Im SS (2007) Novel copolyester-based ionomer for a shape-memory biodegradable material. Polymer 48:1830–1834

    Article  Google Scholar 

  106. Lendlein A, Jiang HY, Jünger O, Langer R (2005) Light-induced shape-memory polymers. Nature 434:879–882

    Article  Google Scholar 

  107. Lee KM, Koerner H, Vaia RA, Bunning TJ, White TJ (2011) Light-activated shape memory of glassy, azobenzene liquid crystalline polymer networks. Soft Matter 7:4318–4324

    Article  Google Scholar 

  108. Kumpfer JR, Rowan SJ (2011) Thermo-, photo-, and chemo-responsive shape-memory properties from photo-cross-linked metallo-supramolecular polymers. J Am Chem Soc 133:12866–12874

    Article  Google Scholar 

  109. Zhang HJ, Zhao Y (2013) Polymers with dual light-triggered functions of shape memory and healing using gold nanoparticles. ACS Appl Mater Interfaces 5:13069–13075

    Article  Google Scholar 

  110. Michal BT, McKenzie BM, Felder SE, Rowan SJ (2015) Metallo-, thermo-, and photoresponsive shape memory and actuating liquid crystalline elastomers. Macromolecules 48:3239–3246

    Article  Google Scholar 

  111. Yu L, Wang Q, Sun J, Li CY, Zou C, He ZM, Wang ZD, Zhou L, Zhang LY, Yang H (2015) Multi-shape-memory effects in a wavelength-selective multicomposite. J Mater Chem A 3:13953–13961

    Article  Google Scholar 

  112. Xie H, He MJ, Deng XY, Du L, Fan CJ, Yang KK, Wang YZ (2016) Design of poly(l-lactide)-poly(ethylene glycol) copolymer with light-induced shape-memory effect triggered by pendant anthracene groups. ACS Appl Mater Interfaces 8:9431–9439

    Article  Google Scholar 

  113. Fei GX, Li G, Wu LS, Xia HS (2012) A spatially and temporally controlled shape memory process for electrically conductive polymer-carbon nanotube composites. Soft Matter 8:5123–5126

    Article  Google Scholar 

  114. Raja M, Ryu SH, Shanmugharaj AM (2014) Influence of surface modified multiwalled carbon nanotubes on the mechanical and electroactive shape memory properties of polyurethane (PU)/poly(vinylidene diflouride) (PVDF) composites. Colloids Surf A 450:59–66

    Article  Google Scholar 

  115. Zhang ZX, Wang WY, Yang JH, Zhang N, Huang T, Wang Y (2016) Excellent electroactive shape memory performance of EVA/PCL/CNT blend composites with selectively localized CNTs. J Phys Chem C 120:22793–22802

    Article  Google Scholar 

  116. Qi XD, Xiu H, Wei Y, Zhou Y, Guo YL, Huang R, Bai HW, Fu Q (2017) Enhanced shape memory property of polylactide/thermoplastic poly(ether)urethane composites via carbon black self-networking induced co-continuous structure. Compos Sci Technol 139:8–16

    Article  Google Scholar 

  117. Mohr R, Kratz K, Weigel T, Lucka-Gabor M, Moneke M, Lendlein A (2006) Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. Proc Natl Acad Sci USA 103:3540–3545

    Article  Google Scholar 

  118. Zheng XT, Zhou SB, Xiao Y, Yu XJ, Li XJ, Wu PZ (2009) Shape memory effect of poly(d, l-lactide)/Fe3O4 nanocomposites by inductive heating of magnetite particles. Colloids Surf B 71:67–72

    Article  Google Scholar 

  119. Kumar UN, Kratz K, Wagermaier W, Behl M, Lendlein A (2010) Non-contact actuation of triple-shape effect in multiphase polymer network nanocomposites in alternating magnetic field. J Mater Chem 20:3404–3415

    Article  Google Scholar 

  120. Zhang FH, Zhang ZC, Luo CJ, Lin IT, Liu YJ, Leng JS, Smoukov SK (2015) Remote, fast actuation of programmable multiple shape memory composites by magnetic fields. J Mater Chem C 3:11290–11293

    Article  Google Scholar 

  121. Du L, Xu ZY, Fan CJ, Xiang G, Yang KK, Wang YZ (2018) A fascinating metallo-supramolecular polymer network with thermal/magnetic/light-responsive shape-memory effects anchored by Fe3O4 nanoparticles. Macromolecules 51:705–715

    Article  Google Scholar 

  122. Chen S, Hu J, Yuen CW, Chan L (2009) Novel moisture-sensitive shape memory polyurethanes containing pyridine moieties. Polymer (Guildf) 50:4424–4428

    Article  Google Scholar 

  123. Zhao Y, Wang CC, Huang MW, Purnawali H (2011) Buckling of poly(methyl methacrylate) in stimulus-responsive shape recovery. Appl Phys Lett 99: id.131911 (1–3)

    Article  Google Scholar 

  124. Gu X, Mather PT (2013) Water-triggered shape memory of multiblock thermoplastic polyurethanes (TPUs). RSC Adv 3:15783–15791

    Article  Google Scholar 

  125. Fang Y, Ni Y, Choi B, Leo SY, Gao J, Ge B, Taylor C, Basile V, Jiang P (2015) Chromogenic photonic crystals enabled by novel vapour-responsive shape-memory polymers. Adv Mater 27(24):3696–3704

    Article  Google Scholar 

  126. Landsman TL, Bush RL, Glowczwski A, Horn J, Jessen SL, Ungchusri E, Diguette K, Smith HR, Hasan SM, Nash D, Clubb FJ Jr, Maitland DJ (2016) Design and verification of a shape memory polymer peripheral occlusion device. J Mech Behav Biomed Mater 63:195–206

    Article  Google Scholar 

  127. Webb GA, Aliew AE (eds) (2006) Nuclear magnetic resonance. Chemical Society (UK), Royal Society of Chemistry, London

    Google Scholar 

  128. Bertmer M, Buda A, Blomenkamp-Hofges I, Kelch S, Lendlein A (2005) Solid-State NMR characterization of biodegradable shape-memory polymer networks. Macromol Symp 230:110–115

    Article  Google Scholar 

  129. Powers DS, Vaia RA, Koerner H, Serres J, Mirau PA (2008) NMR characterization of low hard segment thermoplastic polyurethane/carbon nanofiber composites. Macromolecules 41:4290–4295

    Article  Google Scholar 

  130. Behl M, Bellin I, Kelch S, Wagermaier W, Lendlein A (2009) One-step process for creating triple-shape capability of AB polymer networks. Adv Funct Mater 19:102–108

    Article  Google Scholar 

  131. Wagermaier W, Kratz K, Heuchel M, Lendlein A (2010) Characterization methods for shape-memory polymers. In: Lendlein A. (eds) Shape-memory polymers. Adv Polym Sci, 226: 97–145, Springer, Berlin, Heidelberg

    Google Scholar 

  132. Zhu Y, Hu JL, Yeung KW, Liu YQ, Liem HM (2006) Influence of ionic groups on the crystallization and melting behavior of segmented polyurethane ionomers. J Appl Polym Sci 100:4603–4613

    Article  Google Scholar 

  133. Fu S, Ren H, Ge Z, Zhuo H, Chen S (2017) Shape memory polyurethanes based on zwitterionic hard segments. Polymers 9(10):465–480

    Article  Google Scholar 

  134. Ansari M, Golzar M, Baghani M, Soleimani M (2018) Shape memory characterization of poly (ε-caprolactone)(PCL)/polyurethane (PU) in combined torsion-tension loading with potential applications in cardiovascular stent. Polym Testing 68:424–432

    Article  Google Scholar 

  135. Romo-Uribe A, Albanil L (2018) Dynamics retardation in hybrid POSS-NIPAm nanocomposites. Thermoplastic and thermally-responsive hydrogel behaviour. Eur Polym J 99:350–360

    Article  Google Scholar 

  136. Kong D, Xiao X (2016) High cycle-life shape memory polymer at high temperature. Sci Rep 6:33610. https://doi.org/10.1038/srep33610

    Article  Google Scholar 

  137. Ni Q-Q, Zhang C-S, Fu Y, Dai GS, Kimura T (2007) Shape memory effect and mechanical properties of carbon nanotube/shape memory polymer nanocomposites. Compos Struct 81:176–184

    Article  Google Scholar 

  138. Lützen H, Gesing TM, Kim BK, Hartwig A (2012) Novel cationically polymerized epoxy/poly(ɛ-caprolactone) polymers showing a shape memory effect. Polymer 53:6089–6095

    Article  Google Scholar 

  139. Auad ML, Contos VS, Nutt S, Aranguren MI, Marcovich NE (2008) Characterization of nanocellulose reinforced shape memory polyurethanes. Polym Int 57:651–659

    Article  Google Scholar 

  140. Di Prima MA, Gall K, McDowell DL, Guldberg R, Lin A, Sanderson T, Campbell D, Arzberger SC (2010) Cyclic compression behavior of epoxy shape memory polymer foam. Mech Mater 42:405–416

    Article  Google Scholar 

  141. Wornyo E, Gall K, Yang F, King W (2007) Nanoindentation of shape memory polymer networks. Polymer 48:3213–3225

    Article  Google Scholar 

  142. Fulcher JT, Lu YC, Tandon GP, Foster DC (2010) Thermomechanical characterization of shape memory polymers using high temperature nanoindentation. Polym Test 29:544–552

    Article  Google Scholar 

  143. Cox LM, Killgore JP, Li Z, Long R, Sanders AW, Xiao J, Ding Y (2016) Influences of substrate adhesion and particle size on the shape memory effect of polystyrene particles. Langmuir 32(15):3691–3698

    Article  Google Scholar 

  144. Cox LM, Killgore JP, Li Z, Zhang Z, Hurley DC, Xiao J, Ding Y (2014) Morphing metal–polymer janus particles. Adv Mater 26:899–904

    Article  Google Scholar 

  145. Huang J, Lai L, Chen H, Chen S, Gao J (2018) Development of a new shape-memory polymer in the form of microspheres. Mater Lett 225:24–27

    Article  Google Scholar 

  146. Liu R, Dai H, Zhou Q, Zhang Q, Zhang P (2016) Synthesis and characterization of shape-memory poly carbonate urethane microspheres for future vascular embolization. J Biomater Sci Polym Ed 27(12):1248–1261

    Article  Google Scholar 

  147. Xiao X, Hu J (2016) Animal hairs as water-stimulated shape memory materials: mechanism and structural networks in molecular assemblies. Sci Rep 6:26393

    Article  Google Scholar 

  148. Xiao X, Xie T, Cheng YT (2010) Self-healable graphene polymer composites. J Mater Chem 20:3508–3514

    Article  Google Scholar 

  149. Xiao X, Hu J (2016) Influence of sodium bisulfite and lithium bromide solutions on the shape fixation of camel guard hairs in slenderization process. Int J Chem Eng 2016, Id: 4803254. http://dx.doi.org/10.1155/2016/4803254

  150. Chen H, Xia H, Ni Q-Q (2018) Study on material performances of lead zirconate titanate/shape memory polyurethane composites combining shape memory and piezoelectric effect. Compos Part A Appl Sci Manuf 110:183–189

    Article  Google Scholar 

  151. Yu K, Liu Y, Liu Y, Peng H-X, Leng J (2014) Mechanical and shape recovery properties of shape memory polymer composite embedded with cup-stacked carbon nanotubes. J Intell Mater Syst Struct 25:1264–1275

    Article  Google Scholar 

  152. Gunes IS, Cao F, Jana SC (2008) Evaluation of nanoparticulate fillers for development of shape memory polyurethane nanocomposites. Polymer 49(9):2223–2234

    Article  Google Scholar 

  153. Han J, Zhu Y, Hu J, Luo H, Yeung L-Y, Li W, Meng Q, Ye G, Zhang S, Fan Y (2012) Morphology, reversible phase crystallization, and thermal sensitive shape memory effect of cellulose whisker/SMPU nano-composites. J Appl Polym Sci 123:749–762

    Article  Google Scholar 

  154. Yin Q, Wang D, Jia H, Ji Q, Wang L, Li G, Yin B (2018) Water-induced modulus changes of bio-based uncured nanocomposite film based on natural rubber and bacterial cellulose nanocrystals. Ind Crops and Prod 113:240–248

    Article  Google Scholar 

  155. Guo Q, Bishop CJ, Meyer RA, Wilson DR, Olasov L, Schlesinger DE, Mather PT, Spicer JB, Elisseeff JH, Green JJ (2018) Entanglement-based thermoplastic shape memory polymeric particles with photothermal actuation for biomedical applications. ACS Appl Mater Interfaces 10(16):13333–13341

    Article  Google Scholar 

  156. Espinha A, Guidetti G, Serrano MC, Frka-Petesic B, Dumanli AG, Hamad WY, Blanco A, López C, Vignolini S (2016) Shape memory cellulose-based photonic reflectors. ACS Appl Mater Interfaces 8(46):31935–31940

    Article  Google Scholar 

  157. Mendez J, Annamalai PK, Eichhorn SJ, Rusli R, Rowan SJ, Foster EJ, Weder C (2011) Bioinspired mechanically adaptive polymer nanocomposites with water-activated shape-memory effect. Macromolecules 44(17):6827–6835

    Article  Google Scholar 

  158. Chen S, Ban J, Mu L, Zhuo H (2018) Development of liquid crystalline polyurethane composites with stage-responsive shape memory effects. Polym Chem 9(5):576–583

    Article  Google Scholar 

  159. Yang F, Wornyo E, Gall K, King WP (2007) Nanoscale indent formation in shape memory polymers using a heated probe tip. Nanotechnology 18:285302

    Article  Google Scholar 

  160. Fang L, Gould OEC, Lysyakova L, Jiang Y, Sauter T, Frank O, Becker T, Schossig M, Kratz K, Lendlein A (2018) Implementing and quantifying the shape-memory effect of single polymeric micro/nanowires with an atomic force microscope. Chem Phys Chem 19:2078–2084

    Article  Google Scholar 

  161. Meier T, Bur J, Reinhard M, Schneider M, Kolew A, Worgull M, Hölscher H (2015) Programmable and self-demolding microstructured molds fabricated from shape-memory polymers. J Micromech Microeng 25(6):065017

    Article  Google Scholar 

  162. Weems AC, Raymond JE, Easley AD, Wierzbicki MA, Gustafson T, Monroe MBB, Maitland DJ (2017) Shape memory polymers with visible and near-infrared imaging modalities: synthesis, characterization and in vitro analysis. RSC Adv 7(32):19742–19753

    Article  Google Scholar 

  163. Gong T, Zhao K, Wang W, Chen H, Wang L, Zhou S (2014) Thermally activated reversible shape switch of polymer particles. J Mater Chem B 2(39):6855–6866

    Article  Google Scholar 

  164. Gong T, Zhao K, Yang G, Li J, Chen H, Chen Y, Zhou S (2014) The control of mesenchymal stem cell differentiation using dynamically tunable surface microgrooves. Adv Healthc Mater 3(10):1608–1619

    Article  Google Scholar 

  165. Chung T, Romo-Uribe A, Mather PT (2008) Two-way reversible shape memory in a semicrystalline network. Macromolecules 41(1):184–192

    Article  Google Scholar 

  166. Alvarado-Tenorio B, Romo-Uribe A, Mather PT (2011) Microstructure and phase behavior of POSS/PCL shape memory nanocomposites. Macromolecules 44:5682–5692

    Article  Google Scholar 

  167. Alvarado-Tenorio B, Romo-Uribe A, Mather PT (2015) Nanoscale order and crystallization in POSS-PCL shape memory molecular networks. Macromolecules 48:5770–5779

    Article  Google Scholar 

  168. Arzberger SC et al (2005) Elastic memory composites (EMC) for deployable industrial and commercial applications. Bellingham, WA: SPIE. https://doi.org/10.1117/12.600583

  169. Lin JKH, Knoll CF, Willey CE (2006) Shape memory rigidizable inflatable (RI) structures for large space systems applications. In: 47th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference. AIAA, Newport, Rhode Island, pp 1–10

    Google Scholar 

  170. Sanderson T, and Gall K (2007) Shape memory polymer characterization for advanced air vehicle technologies, Raytheon Technol Today

    Google Scholar 

  171. Bashir M, Lee C F, Rajendran P (2017) Shape memory materials and their applications in aircraft morphing: an introspective study. ARPN J Eng Appl Sci 12, Article no 19

    Google Scholar 

  172. Yu K, Liu Y, Leng J (2011) Conductive shape memory polymer composite incorporated with hybrid fillers: electrical, mechanical, and shape memory properties. J Intell Mater Syst Struct 22:1–11

    Google Scholar 

  173. Liu Y, Du H, Liu Land Leng J (2014) Shape memory polymers and their composites in aerospace applications: a review. Smart Mater Struct 23:023001

    Article  Google Scholar 

  174. Sun J, Guan Q, Liu Y, Leng J (2016) Morphing aircraft based on smart materials and structures: a state-of the-art review. J Intell Mater Syst Struct 27:2289–2312

    Article  Google Scholar 

  175. Wischke C, Neffe AT, Steuer S, Lendlein A (2009) Evaluation of a degradable shape-memory polymer network as matrix for controlled drug release. J Control Release 138:243–250

    Article  Google Scholar 

  176. Wischke C, Lendlein A (2010) Shape-memory polymers as drug carriers—a multifunctional system. Pharm Res 27:527–529

    Article  Google Scholar 

  177. Serrano MC, Carbajal L, Ameer GA (2011) Novel biodegradable shape-memory elastomers with drug-releasing capabilities. Adv Mater 23:2211–2215

    Article  Google Scholar 

  178. Buravalla V, Browne A, Johnson N (2010) Tunable vehicle structural members and methods for selectively changing the mechanical properties thereto. United States Patent Grant US7669918B2

    Google Scholar 

  179. Aase JH, Browne AL, Johnson NL, Ulicny JC (2006) Airflow control devices based on active materials. United States Patent Grant 7059664B2

    Google Scholar 

  180. Browne AL, Johnson NL (2007) Shape memory polymer seat assemblies. United States Patent Grant 7309104B2

    Google Scholar 

  181. Barvosa-carter W, Johnson NL, Browne AL. Herrera GA, Mc Knight GP, Massey C (2007) Reversibly expandable energy absorbing assembly utilizing shape memory foams for impact management and methods for operating the same. United States Patent Grant US7267367B2

    Google Scholar 

  182. Browne AL, Johnson NL, Cafeo JA, Mayer RR, Aase JH (2011) Reconfigurable storage bins having a structural component formed of a shape memory material. United States Patent Grant US8061550B2

    Google Scholar 

  183. Browne AL, Johnson NL (2011) Hood assembly utilizing active materials based mechanisms. United States Patent Grant, US7950488B2

    Google Scholar 

  184. Browne AL, Johnson NL (2015) Self-healing and self-cleaning tires utilizing active material actuation. United States Patent Grant, US9211687B2

    Google Scholar 

  185. Mondal S, Hu JL (2006) Temperature stimulating shape memory polyurethane for smart clothing. Indian J Fibre Text Res 31:66–71

    Google Scholar 

  186. Kobayashi K, Hayashi S (1992) Shape memory fibrous sheet and method of imparting shape memory property to fibrous sheet product. United States Patent Grant US5098776A

    Google Scholar 

  187. Kobayashi K, Hayashi S (1992) Woven fabric made of shape memory polymer. United States Patent Grant US5128197A

    Google Scholar 

  188. Chen S, Hu J, Liu Y, Liem H, Zhu Y, Liu Y (2007) Effect of SSL and HSC on morphology and properties of PHA based SMPU synthesized by bulk polymerization method. J Polym Sci Part B Polym Phys 45:444–454

    Article  Google Scholar 

  189. Hu J (2007) Shape memory polymers and textiles. Woodhead, Cambridge

    Book  Google Scholar 

  190. Meng Q, Hu J, Zhu Y, Lu J, Liu Y (2007) Morphology, phase separation, thermal and mechanical property differences of shape memory fibres prepared by different spinning methods. Smart Mater Struct 16(4):1192

    Article  Google Scholar 

  191. Hu J, Chen S (2010) A review of actively moving polymers in textile applications. J Mater Chem 20:3346–3355

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyotishkumar Parameswaranpillai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jose, S., George, J.J., Siengchin, S., Parameswaranpillai, J. (2020). Introduction to Shape-Memory Polymers, Polymer Blends and Composites: State of the Art, Opportunities, New Challenges and Future Outlook. In: Parameswaranpillai, J., Siengchin, S., George, J., Jose, S. (eds) Shape Memory Polymers, Blends and Composites. Advanced Structured Materials, vol 115. Springer, Singapore. https://doi.org/10.1007/978-981-13-8574-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8574-2_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8573-5

  • Online ISBN: 978-981-13-8574-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics