Skip to main content

Hofmeister Salt Solutions: Screened Polarization

  • Chapter
  • First Online:
Solvation Dynamics

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 121))

Abstract

Water dissolves salt into ions and then hydrates the ions in an aqueous solution. Hydration of ions deforms the hydrogen bonding network and triggers the solution with what the pure water never shows such as conductivity, molecular diffusivity, thermal stability, surface stress, solubility, and viscosity, having enormous impact to many branches in biochemistry, chemistry, physics, and energy and environmental industry sectors. However, regulations for the solute-solute-solvent interactions are still open for exploration. From the perspective of the screened ionic polarization and O:H–O bond relaxation, this chapter is focused on understanding the hydration dynamics of Hofmeister ions in the typical YI, NaX, ZX2, and NaT salt solutions (Y = Li, Na, K, Rb, Cs; X = F, Cl, Br, I; Z = Mg, Ca, Ba, Sr; T = ClO4, NO3, HSO4, SCN). Phonon spectrometric analysis turned out the f(C) fraction of bond transition from the mode of deionized water to the hydrating. The linear f(C) ∝ C form features the invariant hydration volume of small cations that are fully-screened by their hydration H2O dipoles. The nonlinear f(C) ∝ 1 − exp(−C/C0) form describes that the number insufficiency of the ordered hydrating H2O diploes partially screens the anions. Molecular anions show stronger yet shorter electric field of dipoles. The screened ionic polarization, inter-solute interaction, and O:H–O bond transition unify the solution conductivity, surface stress, viscosity, and critical energies for phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Hofmeister, Zur Lehre von der Wirkung der Salze. Archi. Exp. Pathol. Pharmakol. 25(1), 1–30 (1888)

    Article  Google Scholar 

  2. Y.L. Huang, X. Zhang, Z.S. Ma, Y.C. Zhou, W.T. Zheng, J. Zhou, C.Q. Sun, Hydrogen-bond relaxation dynamics: resolving mysteries of water ice. Coord. Chem. Rev. 285, 109–165 (2015)

    Article  CAS  Google Scholar 

  3. P. Lo Nostro, B.W. Ninham, Hofmeister phenomena: an update on ion specificity in biology. Chem. Rev. 112(4), 2286–2322 (2012)

    Article  CAS  PubMed  Google Scholar 

  4. C.M. Johnson, S. Baldelli, Vibrational sum frequency spectroscopy studies of the influence of solutes and phospholipids at vapor/water interfaces relevant to biological and environmental systems. Chem. Rev. 114(17), 8416–8446 (2014)

    Article  CAS  PubMed  Google Scholar 

  5. Y. Liu, A. Kumar, S. Depauw, R. Nhili, M.H. David-Cordonnier, M.P. Lee, M.A. Ismail, A.A. Farahat, M. Say, S. Chackal-Catoen, A. Batista-Parra, S. Neidle, D.W. Boykin, W.D. Wilson, Water-mediated binding of agents that target the DNA minor groove. J. Am. Chem. Soc. 133(26), 10171–10183 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. E.K. Wilson, Hofmeister still mystifies. C&EN Arch. 90(29), 42–43 (2012)

    Article  Google Scholar 

  7. B. Wang, W. Jiang, Y. Gao, Z. Zhang, C. Sun, F. Liu, Z. Wang, Energetics competition in centrally four-coordinated water clusters and Raman spectroscopic signature for hydrogen bonding. RSC Adv. 7(19), 11680–11683 (2017)

    Article  CAS  Google Scholar 

  8. K.D. Collins, Why continuum electrostatics theories cannot explain biological structure, polyelectrolytes or ionic strength effects in ion-protein interactions. Biophys. Chem. 167, 43–59 (2012)

    Article  PubMed  CAS  Google Scholar 

  9. L. Li, J.H. Ryu, S. Thayumanavan, Effect of Hofmeister ions on the size and encapsulation stability of polymer nanogels. Langmuir 29(1), 50–55 (2013)

    Article  PubMed  CAS  Google Scholar 

  10. R. Đuričković, P. Claverie, M. Bourson, J.-M. Marchetti, M.D.Fontana Chassot, Water-ice phase transition probed by Raman spectroscopy. J. Raman Spectrosc. 42(6), 1408–1412 (2011)

    Article  CAS  Google Scholar 

  11. Q. Zeng, T. Yan, K. Wang, Y. Gong, Y. Zhou, Y. Huang, C.Q. Sun, B. Zou, Compression icing of room-temperature NaX solutions (X = F, Cl, Br, I). Phys. Chem. Chem. Phys. 18(20), 14046–14054 (2016)

    Article  CAS  PubMed  Google Scholar 

  12. J. Li, C. Zhang, J. Luo, Superlubricity behavior with phosphoric acid-water network induced by rubbing. Langmuir 27(15), 9413–9417 (2011)

    Article  CAS  PubMed  Google Scholar 

  13. J. Li, C. Zhang, J. Luo, Superlubricity achieved with mixtures of polyhydroxy alcohols and acids. Langmuir 29(17), 5239–5245 (2013)

    Article  CAS  PubMed  Google Scholar 

  14. B.C. Donose, I.U. Vakarelski, K. Higashitani, Silica surfaces lubrication by hydrated cations adsorption from electrolyte solutions. Langmuir 21(5), 1834–1839 (2005)

    Article  CAS  PubMed  Google Scholar 

  15. J. Abraham, K.S. Vasu, C.D. Williams, K. Gopinadhan, Y. Su, C.T. Cherian, J. Dix, E. Prestat, S.J. Haigh, I.V. Grigorieva, P. Carbone, A.K. Geim, R.R. Nair, Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 12(6), 546–550 (2017)

    Article  CAS  PubMed  Google Scholar 

  16. L. Chen, G. Shi, J. Shen, B. Peng, B. Zhang, Y. Wang, F. Bian, J. Wang, D. Li, Z. Qian, G. Xu, G. Liu, J. Zeng, L. Zhang, Y. Yang, G. Zhou, M. Wu, W. Jin, J. Li, H. Fang, Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 550(7676), 380–383 (2017)

    Article  CAS  PubMed  Google Scholar 

  17. Y. Zhang, P.S. Cremer, Chemistry of Hofmeister anions and osmolytes. Annu. Rev. Phys. Chem. 61, 63–83 (2010)

    Article  CAS  PubMed  Google Scholar 

  18. C.Q. Sun, Y. Sun, in The Attribute of Water: Single Notion, Multiple Myths. Springer Series Chemical Physics, vol. 113 (Springer, Heidelberg, 2016), 494p

    Google Scholar 

  19. Y. Zhou, Y. Huang, Z. Ma, Y. Gong, X. Zhang, Y. Sun, C.Q. Sun, Water molecular structure-order in the NaX hydration shells (X = F, Cl, Br, I). J. Mol. Liq. 221, 788–797 (2016)

    Article  CAS  Google Scholar 

  20. X.P. Li, K. Huang, J.Y. Lin, Y.Z. Xu, H.Z. Liu, Hofmeister ion series and its mechanism of action on affecting the behavior of macromolecular solutes in aqueous solution. Prog. Chem. 26(8), 1285–1291 (2014)

    CAS  Google Scholar 

  21. F. Hofmeister, Concerning regularities in the protein-precipitating effects of salts and the relationship of these effects to the physiological behaviour of salts. Arch. Exp. Pathol. Pharmacol. 24, 247–260 (1888)

    Article  Google Scholar 

  22. P. Jungwirth, P.S. Cremer, Beyond Hofmeister. Nat. Chem. 6(4), 261–263 (2014)

    Article  CAS  PubMed  Google Scholar 

  23. W.M. Cox, J.H. Wolfenden, The viscosity of strong electrolytes measured by a differential method. Proc. R. Soc. Lond. A 145(855), 475–488 (1934)

    Article  CAS  Google Scholar 

  24. P. Ball, J.E. Hallsworth, Water structure and chaotropicity: their uses, abuses and biological implications. PCCP 17(13), 8297–8305 (2015)

    Article  CAS  PubMed  Google Scholar 

  25. K.D. Collins, M.W. Washabaugh, The Hofmeister effect and the behaviour of water at interfaces. Q. Rev. Biophys. 18(04), 323–422 (1985)

    Article  CAS  PubMed  Google Scholar 

  26. K.D. Collins, Charge density-dependent strength of hydration and biological structure. Biophys. J. 72(1), 65–76 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. T.T. Duignan, D.F. Parsons, B.W. Ninham, Collins’s rule, Hofmeister effects and ionic dispersion interactions. Chem. Phys. Lett. 608, 55–59 (2014)

    Article  CAS  Google Scholar 

  28. X. Liu, H. Li, R. Li, D. Xie, J. Ni, L. Wu, Strong non-classical induction forces in ion-surface interactions: general origin of Hofmeister effects. Sci. Rep. 4, 5047 (2014). http://www.naturecom/srep/2013/131021/srep03005/metrics

  29. W.J. Xie, Y.Q. Gao, A simple theory for the Hofmeister series. J. Phys. Chem. Lett. 4, 4247–4252 (2013)

    Article  CAS  PubMed  Google Scholar 

  30. H. Zhao, D. Huang, Hydrogen bonding penalty upon ligand binding. PLoS ONE 6(6), e19923 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. W.B. O’Dell, D.C. Baker, S.E. McLain, Structural evidence for inter-residue hydrogen bonding observed for cellobiose in aqueous solution. PLoS ONE 7(10), e45311 (2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. M. Cacace, E. Landau, J. Ramsden, The Hofmeister series: salt and solvent effects on interfacial phenomena. Q. Rev. Biophys. 30(3), 241–277 (1997)

    Article  CAS  PubMed  Google Scholar 

  33. I.S. Perelygin, G.P. Mikhailov, S.V. Tuchkov, Vibrational and orientational relaxation of polyatomic anions and ion-molecular hydrogen bond in aqueous solutions. J. Mol. Struct. 381(1–3), 189–192 (1996)

    Article  CAS  Google Scholar 

  34. F. Bruni, S. Imberti, R. Mancinelli, M.A. Ricci, Aqueous solutions of divalent chlorides: ions hydration shell and water structure. J. Chem. Phys. 136(6), 137–148 (2012)

    Article  CAS  Google Scholar 

  35. M. Andreev, A. Chremos, J. de Pablo, J.F. Douglas, Coarse-grained model of the dynamics of electrolyte solutions. J. Phys. Chem. B 121(34), 8195–8202 (2017)

    Article  CAS  PubMed  Google Scholar 

  36. M. Andreev, J.J. de Pablo, A. Chremos, J.F. Douglas, Influence of ion solvation on the properties of electrolyte solutions. J. Phys. Chem. B 122(14), 4029–4034 (2018)

    Article  CAS  PubMed  Google Scholar 

  37. P.H.K.D. Jong, G.W. Neilson, M.C. Bellissent-Funel, Hydration of Ni2+ and Cl in a concentrated nickel chloride solution at 100 °C and 300 °C. J. Chem. Phys. 105(12), 5155–5159 (1996)

    Article  Google Scholar 

  38. C.Q. Sun, J. Chen, Y. Gong, X. Zhang, Y. Huang, (H, Li)Br and LiOH solvation bonding dynamics: molecular nonbond interactions and solute extraordinary capabilities. J. Phys. Chem. B 122(3), 1228–1238 (2018)

    Article  CAS  PubMed  Google Scholar 

  39. C.Q. Sun, Perspective: supersolidity of undercoordinated and hydrating water. Phys. Chem. Chem. Phys. 20, 30104–30119 (2018)

    Article  CAS  PubMed  Google Scholar 

  40. B. Hess, N.F.A. van der Vegt, Cation specific binding with protein surface charges. Proc. Natl. Acad. Sci. 106(32), 13296–13300 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. J.S. Uejio, C.P. Schwartz, A.M. Duffin, W.S. Drisdell, R.C. Cohen, R.J. Saykally, Characterization of selective binding of alkali cations with carboxylate by x-ray absorption spectroscopy of liquid microjets. Proc. Natl. Acad. Sci. 105(19), 6809–6812 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. L. Vrbka, J. Vondrášek, B. Jagoda-Cwiklik, R. Vácha, P. Jungwirth, Quantification and rationalization of the higher affinity of sodium over potassium to protein surfaces. Proc. Natl. Acad. Sci. 103(42), 15440–15444 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. J. Paterová, K.B. Rembert, J. Heyda, Y. Kurra, H.I. Okur, W.R. Liu, C. Hilty, P.S. Cremer, P. Jungwirth, Reversal of the hofmeister series: specific ion effects on peptides. J. Phys. Chem. B 117(27), 8150–8158 (2013)

    Article  PubMed  CAS  Google Scholar 

  44. J. Heyda, T. Hrobárik, P. Jungwirth, Ion-specific interactions between halides and basic amino acids in water†. J. Phys. Chem. A 113(10), 1969–1975 (2009)

    Article  CAS  PubMed  Google Scholar 

  45. J.D. Smith, R.J. Saykally, P.L. Geissler, The effects of dissolved halide anions on hydrogen bonding in liquid water. J. Am. Chem. Soc. 129(45), 13847–13856 (2007)

    Article  CAS  PubMed  Google Scholar 

  46. S. Park, M.D. Fayer, Hydrogen bond dynamics in aqueous NaBr solutions. Proc. Natl. Acad. Sci. U.S.A. 104(43), 16731–16738 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Q. Sun, Raman spectroscopic study of the effects of dissolved NaCl on water structure. Vib. Spectrosc. 62, 110–114 (2012)

    Article  CAS  Google Scholar 

  48. F. Aliotta, M. Pochylski, R. Ponterio, F. Saija, G. Salvato, C. Vasi, Structure of bulk water from Raman measurements of supercooled pure liquid and LiCl solutions. Phys. Rev. B 86(13), 134301 (2012)

    Article  CAS  Google Scholar 

  49. S. Park, M.B. Ji, K.J. Gaffney, Ligand exchange dynamics in aqueous solution studied with 2DIR spectroscopy. J. Phys. Chem. B 114(19), 6693–6702 (2010)

    Article  CAS  PubMed  Google Scholar 

  50. S. Park, M. Odelius, K.J. Gaffney, Ultrafast dynamics of hydrogen bond exchange in aqueous ionic solutions. J. Phys. Chem. B 113(22), 7825–7835 (2009)

    Article  CAS  PubMed  Google Scholar 

  51. K.J. Gaffney, M. Ji, M. Odelius, S. Park, Z. Sun, H-bond switching and ligand exchange dynamics in aqueous ionic solution. Chem. Phys. Lett. 504(1–3), 1–6 (2011)

    Article  CAS  Google Scholar 

  52. Y. Zhou, Y. Zhong, X. Liu, Y. Huang, X. Zhang, C.Q. Sun, NaX solvation bonding dynamics: hydrogen bond and surface stress transition (X = HSO4, NO3, ClO4, SCN). J. Mol. Liq. 248, 432–438 (2017)

    Article  CAS  Google Scholar 

  53. Y. Chen, H.I.I. Okur, C. Liang, S. Roke, Orientational ordering of water in extended hydration shells of cations is ion-specific and correlates directly with viscosity and hydration free energy. Phys. Chem. Chem. Phys. 19(36), 24678–24688 (2017)

    Article  CAS  PubMed  Google Scholar 

  54. Y. Gong, Y. Zhou, H. Wu, D. Wu, Y. Huang, C.Q. Sun, Raman spectroscopy of alkali halide hydration: hydrogen bond relaxation and polarization. J. Raman Spectrosc. 47(11), 1351–1359 (2016)

    Article  CAS  Google Scholar 

  55. X. Zhang, T. Yan, Y. Huang, Z. Ma, X. Liu, B. Zou, C.Q. Sun, Mediating relaxation and polarization of hydrogen-bonds in water by NaCl salting and heating. Phys. Chem. Chem. Phys. 16(45), 24666–24671 (2014)

    Article  CAS  PubMed  Google Scholar 

  56. X. Zhang, Y. Zhou, Y. Gong, Y. Huang, C. Sun, Resolving H(Cl, Br, I) capabilities of transforming solution hydrogen-bond and surface-stress. Chem. Phys. Lett. 678, 233–240 (2017)

    Article  CAS  Google Scholar 

  57. X. Zhang, Y. Xu, Y. Zhou, Y. Gong, Y. Huang, C.Q. Sun, HCl, KCl and KOH solvation resolved solute-solvent interactions and solution surface stress. Appl. Surf. Sci. 422, 475–481 (2017)

    Article  CAS  Google Scholar 

  58. C.Q. Sun, X. Zhang, X. Fu, W. Zheng, J.-L. Kuo, Y. Zhou, Z. Shen, J. Zhou, Density and phonon-stiffness anomalies of water and ice in the full temperature range. J. Phys. Chem. Lett. 4, 3238–3244 (2013)

    Article  CAS  PubMed  Google Scholar 

  59. L. Wang, Y. Guo, P. Li, Y. Song, Anion-specific effects on the assembly of collagen layers mediated by magnesium ion on mica surface. J. Phys. Chem. B 118(2), 511–518 (2014)

    Article  CAS  PubMed  Google Scholar 

  60. Y. Gong, Y. Xu, Y. Zhou, C. Li, X. Liu, L. Niu, Y. Huang, X. Zhang, C.Q. Sun, Hydrogen bond network relaxation resolved by alcohol hydration (methanol, ethanol, and glycerol). J. Raman Spectrosc. 48(3), 393–398 (2017)

    Article  CAS  Google Scholar 

  61. C. Yan, Z. Xue, W. Zhao, J. Wang, T. Mu, Surprising Hofmeister effects on the bending vibration of water. ChemPhysChem 17(20), 3309–3314 (2016)

    Article  CAS  PubMed  Google Scholar 

  62. Z. Yin, L. Inhester, S. Thekku Veedu, W. Quevedo, A. Pietzsch, P. Wernet, G. Groenhof, A. Foehlisch, H. Grubmüller, S.A. Techert, Cationic and anionic impact on the electronic structure of liquid water. J. Phys. Chem. Lett. 8(16), 3759–3764 (2017)

    Article  CAS  PubMed  Google Scholar 

  63. X. Zhang, P. Sun, Y. Huang, T. Yan, Z. Ma, X. Liu, B. Zou, J. Zhou, W. Zheng, C.Q. Sun, Water’s phase diagram: from the notion of thermodynamics to hydrogen-bond cooperativity. Prog. Solid State Chem. 43, 71–81 (2015)

    Article  CAS  Google Scholar 

  64. J.C. Araque, S.K. Yadav, M. Shadeck, M. Maroncelli, C.J. Margulis, How is diffusion of neutral and charged tracers related to the structure and dynamics of a room-temperature ionic liquid? Large deviations from Stokes-Einstein behavior explained. J. Phys. Chem. B 119(23), 7015–7029 (2015)

    Article  CAS  PubMed  Google Scholar 

  65. G. Jones, M. Dole, The viscosity of aqueous solutions of strong electrolytes with special reference to barium chloride. J. Am. Chem. Soc. 51(10), 2950–2964 (1929)

    Article  CAS  Google Scholar 

  66. K. Wynne, The mayonnaise effect. J. Phys. Chem. Lett. 8(24), 6189–6192 (2017)

    Article  CAS  PubMed  Google Scholar 

  67. S.T. van der Post, C.S. Hsieh, M. Okuno, Y. Nagata, H.J. Bakker, M. Bonn, J. Hunger, Strong frequency dependence of vibrational relaxation in bulk and surface water reveals sub-picosecond structural heterogeneity. Nat. Commun. 6, 8384 (2015)

    Article  PubMed  CAS  Google Scholar 

  68. T. Brinzer, E.J. Berquist, Z. Ren (任哲), S. Dutta, C.A. Johnson, C.S. Krisher, D.S. Lambrecht, S. Garrett-Roe, Ultrafast vibrational spectroscopy (2D-IR) of CO2 in ionic liquids: carbon capture from carbon dioxide’s point of view. J. Chem. Phys. 142(21), 212425 (2015)

    Article  PubMed  CAS  Google Scholar 

  69. Z. Ren, A.S. Ivanova, D. Couchot-Vore, S. Garrett-Roe, Ultrafast structure and dynamics in ionic liquids: 2D-IR spectroscopy probes the molecular origin of viscosity. J. Phys. Chem. Lett. 5(9), 1541–1546 (2014)

    Article  CAS  PubMed  Google Scholar 

  70. Q. Wei, D. Zhou, H. Bian, Negligible cation effect on the vibrational relaxation dynamics of water molecules in NaClO4 and LiClO4 aqueous electrolyte solutions. RSC Adv. 7(82), 52111–52117 (2017)

    Article  CAS  Google Scholar 

  71. A.W. Omta, M.F. Kropman, S. Woutersen, H.J. Bakker, Negligible effect of ions on the hydrogen-bond structure in liquid water. Science 301(5631), 347–349 (2003)

    Article  CAS  PubMed  Google Scholar 

  72. R. Mancinelli, A. Botti, F. Bruni, M.A. Ricci, A.K. Soper, Hydration of sodium, potassium, and chloride ions in solution and the concept of structure maker/breaker. J. Phys. Chem. B 111, 13570–13577 (2007)

    Article  CAS  PubMed  Google Scholar 

  73. K.D. Collins, Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process. Methods 34(3), 300–311 (2004)

    Article  CAS  PubMed  Google Scholar 

  74. K. Tielrooij, N. Garcia-Araez, M. Bonn, H. Bakker, Cooperativity in ion hydration. Science 328(5981), 1006–1009 (2010)

    Article  CAS  PubMed  Google Scholar 

  75. Z.S. Nickolov, J. Miller, Water structure in aqueous solutions of alkali halide salts: FTIR spectroscopy of the OD stretching band. J. Colloid Interface Sci. 287(2), 572–580 (2005)

    Article  CAS  PubMed  Google Scholar 

  76. X. Zhang, Y. Huang, Z. Ma, Y. Zhou, W. Zheng, J. Zhou, C.Q. Sun, A common supersolid skin covering both water and ice. Phys. Chem. Chem. Phys. 16(42), 22987–22994 (2014)

    Article  CAS  PubMed  Google Scholar 

  77. X. Zhang, Y. Huang, Z. Ma, Y. Zhou, J. Zhou, W. Zheng, Q. Jiang, C.Q. Sun, Hydrogen-bond memory and water-skin supersolidity resolving the Mpemba paradox. Phys. Chem. Chem. Phys. 16(42), 22995–23002 (2014)

    Article  CAS  PubMed  Google Scholar 

  78. R. Zangi, B. Berne, Aggregation and dispersion of small hydrophobic particles in aqueous electrolyte solutions. J. Phys. Chem. B 110(45), 22736–22741 (2006)

    Article  CAS  PubMed  Google Scholar 

  79. Y. Levin, Polarizable ions at interfaces. Phys. Rev. Lett. 102(14), 147803 (2009)

    Article  PubMed  CAS  Google Scholar 

  80. H.I. Okur, J. Hladílková, K.B. Rembert, Y. Cho, J. Heyda, J. Dzubiella, P.S. Cremer, P. Jungwirth, Beyond the Hofmeister series: ion-specific effects on proteins and their biological functions. J. Phys. Chem. B 121(9), 1997–2014 (2017)

    Article  CAS  PubMed  Google Scholar 

  81. L. Pauling, The Nature of the Chemical Bond, 3rd edn. (Cornell University Press, Ithaca, NY, 1960)

    Google Scholar 

  82. C.Q. Sun, Relaxation of the Chemical Bond. Springer Series Chemical Physics, vol. 108 (Springer, Heidelberg, 2014), 807p

    Book  Google Scholar 

  83. C.Q. Sun, Y. Sun, Y.G. Ni, X. Zhang, J.S. Pan, X.H. Wang, J. Zhou, L.T. Li, W.T. Zheng, S.S. Yu, L.K. Pan, Z. Sun, Coulomb repulsion at the nanometer-sized contact: a force driving superhydrophobicity, superfluidity, superlubricity, and supersolidity. J. Phys. Chem. C 113(46), 20009–20019 (2009)

    Article  CAS  Google Scholar 

  84. X. Zhang, Y. Huang, Z. Ma, L. Niu, C.Q. Sun, From ice superlubricity to quantum friction: electronic repulsivity and phononic elasticity. Friction 3(4), 294–319 (2015)

    Article  CAS  Google Scholar 

  85. H. Fang, Z. Tang, X. Liu, Y. Huang, C.Q. Sun, Capabilities of anion and cation on hydrogen-bond transition from the mode of ordinary water to (Mg, Ca, Sr)(Cl, Br)2 hydration. J. Mol. Liq. 279, 485–491 (2019)

    Article  CAS  Google Scholar 

  86. C.Q. Sun, X. Zhang, J. Zhou, Y. Huang, Y. Zhou, W. Zheng, Density, elasticity, and stability anomalies of water molecules with fewer than four neighbors. J. Phys. Chem. Lett. 4, 2565–2570 (2013)

    Article  CAS  PubMed  Google Scholar 

  87. C.Q. Sun, Perspective: unprecedented O:⇔:O compression and H↔H fragilization in Lewis solutions. Phys. Chem. Chem. Phys. 21, 2234–2250 (2019)

    Article  CAS  PubMed  Google Scholar 

  88. L.M. Levering, M.R. Sierra-Hernández, H.C. Allen, Observation of hydronium ions at the air–aqueous acid interface: vibrational spectroscopic studies of aqueous HCl, HBr, and HI. J. Phys. Chem. C 111(25), 8814–8826 (2007)

    Article  CAS  Google Scholar 

  89. C.Q. Sun, Size dependence of nanostructures: impact of bond order deficiency. Prog. Solid State Chem. 35(1), 1–159 (2007)

    Article  CAS  Google Scholar 

  90. C.Q. Sun, Aqueous charge injection: solvation bonding dynamics, molecular nonbond interactions, and extraordinary solute capabilities. Int. Rev. Phys. Chem. 37(3–4), 363–558 (2018)

    Article  CAS  Google Scholar 

  91. J. Ostmeyer, S. Chakrapani, A.C. Pan, E. Perozo, B. Roux, Recovery from slow inactivation in K channels is controlled by water molecules. Nature 501(7465), 121–124 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. C.Q. Sun, Oxidation electronics: bond-band-barrier correlation and its applications. Prog. Mater Sci. 48(6), 521–685 (2003)

    Article  CAS  Google Scholar 

  93. W.T. Zheng, C.Q. Sun, Electronic process of nitriding: mechanism and applications. Prog. Solid State Chem. 34(1), 1–20 (2006)

    Article  CAS  Google Scholar 

  94. Y. Tong, I.Y. Zhang, R.K. Campen, Experimentally quantifying anion polarizability at the air/water interface. Nat. Commun. 9, 1313 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. M. Nagasaka, H. Yuzawa, N. Kosugi, Interaction between water and alkali metal ions and its temperature dependence revealed by oxygen K-edge X-ray absorption spectroscopy. J. Phys. Chem. B 121(48), 10957–10964 (2017)

    Article  CAS  PubMed  Google Scholar 

  96. Y. Zhou, Y. Zhong, Y. Gong, X. Zhang, Z. Ma, Y. Huang, C.Q. Sun, Unprecedented thermal stability of water supersolid skin. J. Mol. Liq. 220, 865–869 (2016)

    Article  CAS  Google Scholar 

  97. Q. Hu, H. Zhao, Understanding the effects of chlorine ion on water structure from a Raman spectroscopic investigation up to 573 K. J. Mol. Struct. 1182, 191–196 (2019)

    Article  CAS  Google Scholar 

  98. N. Ohtomo, K. Arakawa, Neutron diffraction study of aqueous ionic solutions. I. Aqueous solutions of lithium chloride and cesium chloride. Bull. Chem. Soc. Jpn 52, 2755–2759 (1979)

    Article  CAS  Google Scholar 

  99. Y. Huang, X. Zhang, Z. Ma, Y. Zhou, J. Zhou, W. Zheng, C.Q. Sun, Size, separation, structure order, and mass density of molecules packing in water and ice. Sci. Rep. 3, 3005 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  100. X.J. Liu, M.L. Bo, X. Zhang, L. Li, Y.G. Nie, H. TIan, Y. Sun, S. Xu, Y. Wang, W. Zheng, C.Q. Sun, Coordination-resolved electron spectrometrics. Chem. Rev. 115(14), 6746–6810 (2015)

    Article  CAS  PubMed  Google Scholar 

  101. M.A. Omar, Elementary Solid State Physics: Principles and Applications (Addison-Wesley, New York, 1993)

    Google Scholar 

  102. M. Nagasaka, H. Yuzawa, N. Kosugi, Development and application of in situ/operando soft X-ray transmission cells to aqueous solutions and catalytic and electrochemical reactions. J. Electron Spectrosc. Relat. Phenom. 200, 293–310 (2015)

    Article  CAS  Google Scholar 

  103. C.Q. Sun, X. Zhang, W.T. Zheng, Hidden force opposing ice compression. Chem. Sci. 3, 1455–1460 (2012)

    Article  CAS  Google Scholar 

  104. J. Chen, C. Yao, X. Liu, X. Zhang, C.Q. Sun, Y. Huang, H2O2 and HO solvation dynamics: solute capabilities and solute-solvent molecular interactions. Chem. Sel. 2(27), 8517–8523 (2017)

    CAS  Google Scholar 

  105. X. Zhang, P. Sun, Y. Huang, Z. Ma, X. Liu, J. Zhou, W. Zheng, C.Q. Sun, Water nanodroplet thermodynamics: quasi-solid phase-boundary dispersivity. J. Phys. Chem. B 119(16), 5265–5269 (2015)

    Article  CAS  PubMed  Google Scholar 

  106. X. Zhang, X. Liu, Y. Zhong, Z. Zhou, Y. Huang, C.Q. Sun, Nanobubble skin supersolidity. Langmuir 32(43), 11321–11327 (2016)

    Article  CAS  PubMed  Google Scholar 

  107. C.Q. Sun, C. Yao, Y. Sun, X. Liu, H. Fang, Y. Huang, (H, Li)Cl and LiOH hydration: surface tension, solution conductivity and viscosity, and exothermic dynamics. J. Mol. Liq. (2019). https://doi.org/10.1016/j.molliq.2019.03.077

    Article  CAS  Google Scholar 

  108. D.R. Lide, CRC Handbook of Chemistry and Physics, 80th edn. (CRC Press, Boca Raton, 1999)

    Google Scholar 

  109. A.K. Metya, J.K. Singh, Nucleation of aqueous salt solutions on solid surfaces. J. Phys. Chem. C 122(15), 8277–8287 (2018)

    Article  CAS  Google Scholar 

  110. M.A. Sánchez, T. Kling, T. Ishiyama, M.-J. van Zadel, P.J. Bisson, M. Mezger, M.N. Jochum, J.D. Cyran, W.J. Smit, H.J. Bakker, Experimental and theoretical evidence for bilayer-by-bilayer surface melting of crystalline ice. Proc. Natl. Acad. Sci. 114(2), 227–232 (2017)

    Article  PubMed  CAS  Google Scholar 

  111. X. Zhang, Y. Huang, P. Sun, X. Liu, Z. Ma, Y. Zhou, J. Zhou, W. Zheng, C.Q. Sun, Ice regelation: hydrogen-bond extraordinary recoverability and water quasisolid-phase-boundary dispersivity. Sci. Rep. 5, 13655 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  112. Q. Zeng, C. Yao, K. Wang, C.Q. Sun, B. Zou, Room-temperature NaI/H2O compression icing: solute–solute interactions. PCCP 19, 26645–26650 (2017)

    Article  CAS  PubMed  Google Scholar 

  113. L. Wong, R. Shi, D. Auchettl, D.R. McNaughton, E.G.Robertson Appadoo, Heavy snow: IR spectroscopy of isotope mixed crystalline water ice. Phys. Chem. Chem. Phys. 18(6), 4978–4993 (2016)

    Article  CAS  PubMed  Google Scholar 

  114. C. Medcraft, D. McNaughton, C.D. Thompson, D. Appadoo, S. Bauerecker, E.G. Robertson, Size and temperature dependence in the far-ir spectra of water ice particles. Astrophys. J. 758(1), 17 (2012)

    Article  Google Scholar 

  115. E. Mamontov, D.R. Cole, S. Dai, M.D. Pawel, C. Liang, T. Jenkins, G. Gasparovic, E. Kintzel, Dynamics of water in LiCl and CaCl2 aqueous solutions confined in silica matrices: a backscattering neutron spectroscopy study. Chem. Phys. 352(1), 117–124 (2008)

    Article  CAS  Google Scholar 

  116. Q. Wang, L. Zhao, C. Li, Z. Cao, The decisive role of free water in determining homogenous ice nucleation behavior of aqueous solutions. Sci. Rep. 6, 26831 (2016). http://www.naturecom/srep/2013/131021/srep03005/metrics

  117. C.A. Angell, E.J. Sare, J. Donnella, D.R. Macfarlane, Homogeneous nucleation and glass-transition temperatures in solutions of Li salts in D2O and H2O—doubly unstable glass regions. J. Phys. Chem. 85(11), 1461–1464 (1981)

    Article  CAS  Google Scholar 

  118. A. Kumar, Homogeneous nucleation temperatures in aqueous mixed salt solutions. J. Phys. Chem. B 111(37), 10985–10991 (2007)

    Article  CAS  PubMed  Google Scholar 

  119. B. Zobrist, C. Marcolli, T. Peter, T. Koop, Heterogeneous ice nucleation in aqueous solutions: the role of water activity. J. Phys. Chem. A 112(17), 3965–3975 (2008)

    Article  CAS  PubMed  Google Scholar 

  120. K. Miyata, H. Kanno, K. Tomizawa, Y. Yoshimura, Supercooling of aqueous solutions of alkali chlorides and acetates. Bull. Chem. Soc. Jpn. 74(9), 1629–1633 (2001)

    Article  CAS  Google Scholar 

  121. K. Miyata, H. Kanno, Supercooling behavior of aqueous solutions of alcohols and saccharides. J. Mol. Liq. 119(1–3), 189–193 (2005)

    Article  CAS  Google Scholar 

  122. B. Zobrist, U. Weers, T. Koop, Ice nucleation in aqueous solutions of poly[ethylene glycol] with different molar mass. J. Chem. Phys. 118(22), 10254–10261 (2003)

    Article  CAS  Google Scholar 

  123. M. Oguni, C.A. Angell, Heat capacities of H2O + H2O2, and H2O + N2H4, binary solutions: isolation of a singular component for Cp of supercooled water. J. Chem. Phys. 73(4), 1948 (1980)

    Article  CAS  Google Scholar 

  124. A. Bogdan, T. Loerting, Impact of substrate, aging, and size on the two freezing events of (NH4)2SO4/H2O droplets. J. Phys. Chem. C 115(21), 10682–10693 (2011)

    Article  CAS  Google Scholar 

  125. A. Bogdan, M.J. Molina, H. Tenhu, E. Mayer, T. Loerting, Formation of mixed-phase particles during the freezing of polar stratospheric ice clouds. Nat. Chem. 2(3), 197–201 (2010)

    Article  CAS  PubMed  Google Scholar 

  126. H.Y.A. Chang, T. Koop, L.T. Molina, M.J. Molina, Phase transitions in emulsified HNO3/H2O and HNO3/H2SO4/H2O solutions. J. Phys. Chem. A 103(15), 2673–2679 (1999)

    Article  CAS  Google Scholar 

  127. K. Murata, H. Tanaka, Liquid-liquid transition without macroscopic phase separation in a water-glycerol mixture. Nat. Mater. 11(5), 436–443 (2012)

    Article  CAS  PubMed  Google Scholar 

  128. J.M. Hey, D.R. MacFarlane, Crystallization of ice in aqueous solutions of glycerol and dimethyl sulfoxide. 1. A comparison of mechanisms. Cryobiology 33(2), 205–216 (1996)

    Article  CAS  PubMed  Google Scholar 

  129. K.D. Beyer, A.R. Hansen, N. Raddatz, Experimental determination of the H2SO4/HNO3/H2O phase diagram in regions of stratospheric importance. J. Phys. Chem. A 108(5), 770–780 (2004)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Q Sun .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sun, C.Q. (2019). Hofmeister Salt Solutions: Screened Polarization. In: Solvation Dynamics. Springer Series in Chemical Physics, vol 121. Springer, Singapore. https://doi.org/10.1007/978-981-13-8441-7_6

Download citation

Publish with us

Policies and ethics