Skip to main content

Teratogenic Activity of Toxins in Zebrafish Model

  • Chapter
  • First Online:
Zebrafish: A Model for Marine Peptide Based Drug Screening

Abstract

Toxins from the posterior salivary gland (PSG) of cuttlefish are known toxins with pronounced toxicity. In this chapter, crude toxins from Sepia pharashadi are fractionated by ion-exchange chromatography and purified by reversed-phase high-performance liquid chromatography (RP-HPLC). The yield protein and carbohydrate contents of the PSG toxin are estimated to be 1.61 mg/g and 0.06 mg/g, respectively. Fourier transform infrared spectroscopy (FT-IR) of PSG toxin affirmed the incidence of CO-NH, CH and conjugated alkyl, alcoholic OH and primary NH functional groups. Circular dichroism (CD) spectroscopy and K2D analysis of the PSG toxin authenticated the attendance of secondary structure with 37% α-helix, 26% β sheet and 38% random coil. Teratogenicity of PSG toxin against Zebrafish embryo exhibited evolving malformations and premature hatching at a maximum tolerated dose of 1.0 μM. These findings strongly exhibit the toxicity of the ionic peptide-rich PSG toxin from S. pharashadi and its utilisation for its promise as a prospective cytotoxic agent of the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ballering RB, Jalving MA, VenTresca DA, Hallacher LE, Tomlinson JT, Wobber DR (1972) Octopus evenomation through a plastic bag via a salivary proboscis. Toxicon 10(3):245–248

    Article  CAS  Google Scholar 

  • Casewell NR, Wuster W, Vonk FJ, Harrison RA, Fry BG (2013) Complex cocktails: the evolutionary novelty of venoms. Trends Ecol Eval 28(4):219–229

    Article  Google Scholar 

  • Cornet V, Henry J, Corre E, Le Corguille G, Zanuttini B, Zatylny-Gaudin C (2014) Dual role of the cuttlefish salivary proteome in defense and predation. J Proteome 108:209–222

    Article  CAS  Google Scholar 

  • Erspamer V, Anastasi A (1962) Structure and pharmacological actions of eledoisin, the active endecapeptide of the posterior salivary glands of Eledone. Experientia 18(2):58–59

    Article  CAS  Google Scholar 

  • Eterovic VA, Ferchmin PA (1977) Predicted secondary structure of snake venom toxins from their primary structures. Int J Pept Protein Res 10(3):245–251

    Article  CAS  Google Scholar 

  • Ghiretti F (1959) Cephalotoxin: the crab-paralysing agent of the posterior salivary glands of cephalopods. Nature 183:1192–1193

    Article  Google Scholar 

  • Ghiretti F (1960) Toxicity of octopus saliva against Crustacea. Ann N Y Acad Sci 90(3):726–741

    Article  CAS  Google Scholar 

  • Grisley MS (1993) Separation and partial characterization of salivary enzymes expressed during prey handling in the octopus Eledone cirrhosa. Comp Biochem Physiol B 105(1):183–192

    Article  Google Scholar 

  • Grisley MS, Boyle PR (1987) Bioassay and proteolytic activity of digestive enzymes from octopus saliva. Comp Biochem Physiol B 88(4):1117–1123

    Article  Google Scholar 

  • Karthik R (2016) Studies on structural characterization, teratogenic and anticancer activities of toxin isolated from posterior salivary gland of Sepia pharaonis (Ehrenberg, 1831), Ph.D. thesis, Chettinad University, India, pp 45–48

    Google Scholar 

  • Karthik R, Saravanan R (2014) In: Omics M (ed) Study of marine mollusks – a glycomic approach. CRC Press, Se-Kwon Kim, pp 267–280

    Google Scholar 

  • Knochenmuss R, Zenobi R (2003) MALDI ionization: the role of in-plume processes. Chem Rev 103(2):441–452

    Article  CAS  Google Scholar 

  • Mackessy SP (2009) Handbook of venoms and toxins of reptiles. CRC Press, Boca Raton, pp 520–528

    Google Scholar 

  • McDonald NM, Cottrell GA (1972) Purification and mode of action of toxin from Eledonecirrhosa. Comp Genet Pharmacol 3(10):243–248

    Article  CAS  Google Scholar 

  • McIntosh M, Cruz LJ, Hunkapiller MW, Gray WR, Olivera BM (1982) Isolation and structure of a peptide toxin from the marine snail Conus magus. Arch Biochem Biophys 218(1):329–334

    Article  CAS  Google Scholar 

  • Nagai H (2012) Marine protein toxins. In: Handbook of marine natural products. Springer, Dordrecht, pp 1388–1419

    Chapter  Google Scholar 

  • Niki I, Yokokura H, Sudo T, Kato M, Hidaka H (1996) Ca2+ signaling and intracellular Ca2+ binding proteins. J Biochem 120(4):685–698

    Article  CAS  Google Scholar 

  • Saravanan R, Karthik R (2016) Isolation of proteoglycans from marine sponges and its biomedical applications. In: Ramjee P, Hermann E (eds) Marine sponges: chemicobiological and biomedical applications. Springer, New Delhi, pp 287–304

    Google Scholar 

  • Shiomi K, Kawashima Y, Mizukami M, Nagashima Y (2002) Properties of proteinaceous toxins in the salivary gland of the marine gastropod (Monoplex echo). Toxicon 40(5):563–571

    Article  CAS  Google Scholar 

  • Songdahl JH, Shapiro BI (1974) Purification and composition of a toxin from the posterior salivary gland of Octopus dofleini. Toxicon 12(2):109–112

    Article  CAS  Google Scholar 

  • Ueda A, Suzuki M, Honma T, Nagai H, Nagashima Y, Shiomi K (2006) Purification, properties and cDNAcloning of neoverrucotoxin (neoVTX), a hemolytic lethal factor from the stonefish Synanceia verrucosa venom. Biochim Biophys Acta 17(11):1713–1722

    Article  Google Scholar 

  • Wesson KJ, Hamann MT, Keenamide A (1996) A bioactive cyclic peptide from the marine mollusk Pleurobranchus forskalii. J Nat Prod 59(6):629–631

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The author gratefully acknowledges the Department of Biotechnology, Ministry of Science and Technology, Government of India (BT/PR15676/AAQ/03/794/2016).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramachandran, S., Rajagopal, S. (2019). Teratogenic Activity of Toxins in Zebrafish Model. In: Zebrafish: A Model for Marine Peptide Based Drug Screening. Springer, Singapore. https://doi.org/10.1007/978-981-13-7844-7_3

Download citation

Publish with us

Policies and ethics