Skip to main content

Aromatic Compounds and Biofilms: Regulation and Interlinking of Metabolic Pathways in Bacteria

  • Chapter
  • First Online:
Microbial Metabolism of Xenobiotic Compounds

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 10))

Abstract

Bioremediation is the powerful eco-friendly technique for the remediation of toxic aromatic pollutants. However, the activity of augmented organisms in freely suspended form often decreases at the contaminated sites due to number of stress factors. Bacterial biofilms are efficient systems, recently being applied in bioremediation, as they warrant enhanced bioavailability, protection of cells from toxic shocks and optimum microenvironment for the degradation reactions to occur. Recent studies suggest the involvement of biofilm in biodegradation process. However, the regulation and interconnection of the degradation pathways through biofilms are still unclear. The present chapter suggests the interlinking of biofilm process and degradation of aromatic compounds through various mechanisms like chemotaxis, HGT events and EPS production. The interference of QS sensing genes and their regulators in the biodegradation of various aromatic compounds and EPS synthesis are also discussed. Hence, this would come up with a better understanding of biofilm-based processes during biodegradation, which in turn aids in consortia development and bioremediation potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abee, T., Kovács, Á. T., Kuipers, O. P., & Van der Veen, S. (2011). Biofilm formation and dispersal in Gram-positive bacteria. Current Opinion in Biotechnology, 22, 172–179.

    CAS  Google Scholar 

  • Ahmad, M., Sajjad, W., Rehman, Z. U., Hayat, M., & Khan, I. (2015). Identification and characterization of intrinsic petrophillic bacteria from oil contaminated soil and water. International Journal of Current Microbiology and Applied Sciences, 4, 338–346.

    CAS  Google Scholar 

  • Archaya, S., Gopinath, L. R., Sangeetha, S., & Bhuvaneshwari, R. (2014). Molecular characterization of kerosene degrading bacteria isolated from kerosene polluted soil. International Journal of Advanced Research, 2, 1117–1124.

    Google Scholar 

  • Atkinson, B. (1981). Immobilized biomass-a basis for process development in wastewater treatment. In P. E. Cooper & B. Atkinson (Eds.), Biological fluidized bed treatment of water and wastewater (pp. 22–34). Chichester: Ellis Horwood.

    Google Scholar 

  • Aldrich, T. L., Frantz, B., Gill, J. F., Kilbane, J. J., & Chakrabarty, A. M. (1987). Cloning and complete nucleotide sequence determination of the catB gene encoding m, m-muconate lactonizing enzyme. Gene, 52, 185–195.

    CAS  Google Scholar 

  • Atkinson, S., & Williams, P. (2009). Quorum sensing and social networking in the microbial world. The Journal of the Royal Society Interface, 6(40), 959–978.

    CAS  Google Scholar 

  • Bestawy, E., Mohamed, H., & Nawal, E. (2005). The potentially of free gram-negative bacteria for removing oil and grease from contamination industrial effluents. World Journal of Microbiology and Biotechnology, 21, 815–822.

    Google Scholar 

  • Blair, K. M., Turner, L., Winkelman, J. T., Berg, H. C., & Kearns, D. B. (2008). A molecular clutch disables flagella in the Bacillus subtilis biofilm. Science, 320, 1636–1638.

    CAS  Google Scholar 

  • Busscher, H. J., Van Der Mei, H. C., Subbiahdoss, G., Jutte, P. C., Van Den Dungen, J. J., Zaat, S. A., Schultz, M. J., & Grainger, D. W. (2012). Biomaterial-associated infection: Locating the finish line in the race for the surface. Science Translational Medicine, 4, 153.

    Google Scholar 

  • Cappello, S., Caruso, G., Zampino, D., Monticelli, L. S., Maimone, G., et al. (2007). Microbial community dynamics during assay of harbor oil spill bioremediation: A microscale stimulation study. Journal of Applied Microbiology, 122, 184–194.

    Google Scholar 

  • Chugani, S., & Greenberg, E. P. (2010). LuxR homolog-independent gene regulation by acyl-homoserine lactones in Pseudomonas aeruginosa. PNAS, 107, 10673–10678.

    CAS  Google Scholar 

  • Claus, H. (2014). Microbial degradation of 2,4,6-trinitrotoluene in vitro and in natural environments. In S. N. Singh (Ed.), Biological remediation of explosive residues, environmental science and engineering (pp. 15–38). Cham: Springer.

    Google Scholar 

  • Dagley, S. (1971). Catabolism of aromatic compounds by micro-organisms. Advances in Microbial Physiology, 6, 1–46.

    CAS  Google Scholar 

  • Das, N., & Chandran, P. (2011). Microbial degradation of petroleum hydrocarbon contaminants: An overview. Biotechnology Research International, 2011, 1–13.

    Google Scholar 

  • Deshmukh, R., Khardenavis, A. A., & Purohit, H. J. (2016). Diverse metabolic capacities of fungi for bioremediation. Indian Journal of Microbiology, 56, 247–264.

    CAS  Google Scholar 

  • Diaz, E., Jimenez, J. I., & Nogales, J. (2013). Aerobic degradation of aromatic compounds. Current Opinion in Biotechnology, 24, 431–442.

    CAS  Google Scholar 

  • Dubey, A. K., Baker, C. S., Romeo, T., & Babitzke, P. (2005). RNA sequence and secondary structure participate in high-affinity CsrA-RNA interaction. RNA, 11, 1579–1587.

    CAS  Google Scholar 

  • El Fantroussi, S., & Agathos, S. N. (2005). Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Current Opinion in Microbiology, 8, 268–275.

    Google Scholar 

  • Fernández, S., Shingler, V., & de Lorenzo, V. (1994). Crossregulation by XylR and DmpR activators of Pseudomonas putida suggests that transcriptional control of biodegradative operons evolves independently of catabolic genes. Journal of Bacteriology, 176, 5052–5058.

    Google Scholar 

  • Flemming, H. C., & Wingender, J. (2010). The biofilm matrix. Nature Reviews. Microbiology, 8, 623–633.

    CAS  Google Scholar 

  • Flemming, H. C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S. A., & Kjelleberg, S. (2016). Biofilms: An emergent form of bacterial life. Nature Reviews. Microbiology, 14, 563.

    CAS  Google Scholar 

  • Fowler, S. J., Dong, X., Sensen, C. W., Suflita, J. M., & Gieg, L. M. (2012). Methanogenic toluene metabolism: Community structure and intermediates. Environmental Microbiology, 14, 754–764.

    CAS  Google Scholar 

  • Franklin, M. J., Nivens, D. E., Weadge, J. T., & Howell, P. L. (2011). Biosynthesis of the Pseudomonas aeruginosa extracellular polysaccharides, alginate, Pel, and Psl. Frontiers in Microbiology, 2, 167.

    Google Scholar 

  • Fuchs, G., Boll, M., & Heider, J. (2011). Microbial degradation of aromatic compounds – From one strategy to four. Nature Reviews Microbiology, 9, 803–816.

    CAS  Google Scholar 

  • Ghosh, S., Qureshi, A., & Purohit, H. J. (2016). Role of Pseudomonas fluorescens EGD-AQ6 biofilms in degrading elevated levels of p-hydroxybenzoate. Journal of Microbial and Biochemical Technology, 8, 6.

    Google Scholar 

  • Ghosh, S., Qureshi, A., & Purohit, H. J. (2017a). Enhanced expression of catechol 1,2 dioxygenase gene in biofilm forming Pseudomonas mendocina EGD-AQ5 under increasing benzoate stress. International Biodeterioration & Biodegradation, 118, 57–65.

    CAS  Google Scholar 

  • Ghosh, S., Qureshi, A., & Purohit, H. J. (2017b). Biofilm microenvironments: Modeling approach. In H. Purohit, V. Kalia, A. Vaidya, & A. Khardenavis (Eds.), Optimization and applicability of bioprocesses (pp. 305–322). Singapore: Springer.

    Google Scholar 

  • Ghosh, S., Qureshi, A., & Purohit, H. J. (2019). D-tryptophan governs biofilm formation rates and bacterial interaction in P. mendocina and S. aureus. Journal of Biosciences, 44(3).

    Google Scholar 

  • Gill, R. T., Harbottle, M. J., Smith, J. W. N., & Thornton, S. F. (2014). Electrokinetic-enhanced bioremediation of organic contaminants: A review of processes and environmental applications. Chemosphere, 107, 31–42.

    CAS  Google Scholar 

  • Gisi, D., Stucki, G., & Hanselmann, K. W. (1997). Biodegradation of the pesticide 4, 6-dinitro-ortho-cresol by microorganisms in batch cultures and in fixed-bed column reactors. Applied Microbiology and Biotechnology, 48, 441–448.

    CAS  Google Scholar 

  • Goodman, A. L., Kulasekara, B., Rietsch, A., Smith, R. S., & Lory, S. (2004). A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. Developmental Cell, 7, 745–754.

    CAS  Google Scholar 

  • Griffin, T. J., Gygi, S. P., Ideker, T., Rist, B., Eng, J., Hood, L., & Aebersold, R. (2002). Complementary profiling of gene expression at the transcriptome and proteome levels in Saccharomyces cerevisiae. Molecular & Cellular Proteomics, 1, 323–333.

    CAS  Google Scholar 

  • Gueriri, I., Bay, S., Dubrac, S., Cyncynatus, C., & Msadek, T. (2008). The Pta–AckA pathway controlling acetyl phosphate levels and the phosphorylation state of the DegU orphan response regulator both play a role in regulating Listeria monocytogenes motility and chemotaxis. Molecular Microbiology, 70, 1342–1357.

    CAS  Google Scholar 

  • Hardie, K. R., & Heurlier, K. (2008). Establishing bacterial communities by ‘word of mouth’: LuxS and autoinducer 2 in biofilm development. Nature Reviews. Microbiology, 6, 635–643.

    CAS  Google Scholar 

  • Harwood, C. S., & Parales, R. E. (1996). The beta-ketoadipate pathway and the biology of self- identity. Annual Review of Microbiology, 50, 553–590.

    CAS  Google Scholar 

  • Hayaishi, O. (2008). From oxygenase to sleep. The Journal of Biological Chemistry, 283, 19165–19175.

    CAS  Google Scholar 

  • Hazen, T. C., Chakraborty, R., Fleming, J. M., Gregory, I. R., Bowman, J. P., Jimenez, L., & Sayler, G. S. (2009). Use of gene probes to assess the impact and effectiveness of aerobic in situ bioremediation of TCE. Archives of Microbiology, 191, 221–232.

    CAS  Google Scholar 

  • Head, I. M., Gray, N. D., & Larter, S. R. (2014). Life in the slow lane; biogeochemistry of biodegraded petroleum containing reservoirs and implications for energy recovery and carbon management. Frontiers in Microbiology, 5, 566.

    Google Scholar 

  • Henikoff, S., Haughn, G. W., Calvo, J. M., & Wallace, J. C. (1988). A large family of bacterial activator proteins. PNAS, 85, 6602–6606.

    CAS  Google Scholar 

  • Heurlier, K., Williams, F., Heeb, S., Dormond, C., Pessi, G., Singer, D., Camara, M., Williams, P., & Haas, D. (2004). Positive control of swarming, rhamnolipid synthesis, and lipase production by the posttranscriptional RsmA/RsmZ system in Pseudomonas aeruginosa PAO1. Journal of Bacteriology, 186, 2936–2945.

    CAS  Google Scholar 

  • Hochbaum, A. I., Kolodkin-Gal, I., Foulston, L., Kolter, R., Aizenberg, J., & Losick, R. (2011). Inhibitory effects of D-amino acids on Staphylococcus aureus biofilm development. Journal of Bacteriology, 193, 5616–5622.

    CAS  Google Scholar 

  • Huang, W. M., Liang, Y. Q., Tang, L. J., Ding, Y., & Wang, X. H. (2013). Antioxidant and anti- inflammatory effects of Astragalus polysaccharide on EA. hy926 cells. Experimental and Therapeutic Medicine, 6, 199–203.

    CAS  Google Scholar 

  • Johnsen, A. R., & Karlson, U. (2004). Evaluation of bacterial strategies to promote the bioavailability of polycyclic aromatic hydrocarbons. Applied Microbiology and Biotechnology, 63, 452–459.

    CAS  Google Scholar 

  • Kargi, F. L., & Eker, S. (2005). Removal of 2,4-dichlorophenol and toxicity from synthetic wastewater in a rotating perforated tube biofilm reactor. Process Biochemistry, 40, 2105–2111.

    CAS  Google Scholar 

  • Karigar, C. S., & Rao, S. S. (2011). Role of microbial enzymes in the bioremediation of pollutants: A review. Enzyme Research, 2011, 1–11.

    Google Scholar 

  • Karpinets, T. V., Pelletier, D. A., Pan, C., Uberbacher, E. C., Melnichenko, G. V., Hettich, R. L., & Samatova, N. F. (2009). Phenotype fingerprinting suggests the involvement of single-genotype consortia in degradation of aromatic compounds by Rhodopseudomonas palustris. PLoS One, 4, e4615.

    Google Scholar 

  • Katsivela, E., Moore, E. R. B., Maroukli, D., Strömpl, C., Pieper, D., & Kalogerakis, N. (2005). Bacterial community dynamics during in-situ bioremediation of petroleum waste sludge in landfarming sites. Biodegradation, 16, 169–180.

    CAS  Google Scholar 

  • Khomenkov, V. G., Shevelev, A. B., Zhukov, V. G., Zagustina, N. A., Bezborodov, A. M., & Popov, V. O. (2008). Organization of metabolic pathways and molecular-genetic mechanisms of xenobiotic degradation in microorganisms: A review. Applied Biochemistry and Microbiology, 44, 117–135.

    CAS  Google Scholar 

  • Kim, S. J., Kweon, O. G., & Cerniglia, C. E. (2009). Proteomic applications to elucidate bacterial aromatic hydrocarbon metabolic pathways. Current Opinion in Microbiology, 12, 301–309.

    CAS  Google Scholar 

  • Kobayashi, K. (2007). Gradual activation of the response regulator Deg U controls serial expression of genes for flagellum formation and biofilm formation in Bacillus subtilis. Molecular Microbiology, 66, 395–409.

    CAS  Google Scholar 

  • Lendenmann, U., & Spain, J. C. (1998). Simultaneous biodegradation of 2,4-dinitrotoluene and 2,6-dinitrotoluene in an aerobic fluidized-bed biofilm reactor. Environmental Science & Technology, 32, 82–87.

    CAS  Google Scholar 

  • Lien, P. J., Ho, H. J., Lee, T. H., Lai, W. L., & Kao, C. M. (2015). Effects of aquifer heterogeneity and geochemical variation on petroleum- hydrocarbon biodegradation at a gasoline spill site. Advances in Materials Research, 1079, 584–588.

    Google Scholar 

  • Lipscomb, J. D. (2008). Mechanism of extradiol aromatic ringcleaving dioxygenases. Current Opinion in Structural Biology, 18, 644–649.

    CAS  Google Scholar 

  • Lombardia, E., Rovetto, A. J., Arabolaza, A. L., & Grau, R. R. (2006). A LuxS-dependent cell-to-cell language regulates social behavior and development in Bacillus subtilis. Journal of Bacteriology, 188, 4442–4452.

    CAS  Google Scholar 

  • Lopez, D., & Kolter, R. (2010). Functional microdomains in bacterial membranes. Genes & Development, 24, 1893–1902.

    CAS  Google Scholar 

  • Lopez, D., Fischbach, M. A., Chu, F., Losick, R., & Kolter, R. (2009). Structurally diverse natural products that cause potassium leakage trigger multicellularity in Bacillus subtilis. PNAS, 106, 280–285.

    CAS  Google Scholar 

  • Luengo, J., Arias, S., Arcos, M., & Olivera, E. (2007). The catabolism of phenylacetic acid and other related molecules in Pseudomonas putida U. In J. Ramos & A. Filloux (Eds.), Pseudomonas: A model system in biology. Dordrecht: Springer.

    Google Scholar 

  • Malik, Z. A., & Ahmed, S. (2012). Degradation of petroleum hydrocarbons by oil field isolated bacterial consortium. African Journal of Biotechnology, 11, 650–658.

    CAS  Google Scholar 

  • Mangwani, N., Shukla, S. K., Kumari, S., Rao, T. S., & Das, S. (2014). Characterization of Stenotrophomonas acidaminiphila NCW-702 biofilm for implication in the degradation of polycyclic aromatic hydrocarbons. Journal of Applied Microbiology, 117, 1012–1024.

    CAS  Google Scholar 

  • Mangwani, N., Kumari, S., & Das, S. (2015). Involvement of quorum sensing genes in biofilm development and degradation of polycyclic aromatic hydrocarbons by a marine Pseudomonas aeruginosa N6P6. Applied Microbiology and Biotechnology, 99, 10283–10297.

    CAS  Google Scholar 

  • Mangwani, N., Kumari, S., & Das, S. (2016). Bacterial biofilms and quorum sensing: Fidelity in bioremediation technology. Biotechnology & Genetic Engineering Reviews, 32, 43–73.

    Google Scholar 

  • Mangwani, N., Kumari, S., & Das, S. (2017). Marine bacterial biofilms in bioremediation of polycyclic aromatic hydrocarbons (PAHs) under terrestrial condition in a soil microcosm. Pedosphere, 27, 548–558.

    Google Scholar 

  • Mishra, S., Bera, A., & Mandal, A. (2014). Effect of polymer adsorption on permeability reduction in enhanced oil recovery. Journal of Petroleum Engineering, 2014, 1–9.

    Google Scholar 

  • Molin, S., & Tolker-Nielsen, T. (2003). Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure. Current Opinion in Biotechnology, 14, 255–261.

    CAS  Google Scholar 

  • Molina, M. C., González, N., Bautista, L. F., Sanz, R., Simarro, R., Sánchez, I., & Sanz, J. L. (2009). Isolation and genetic identification of PAH degrading bacteria from a microbial consortium. Biodegradation, 20, 789–800.

    CAS  Google Scholar 

  • Nolvak, H., Truu, J., Limane, B., Truu, M., Cepurnieks, G., Bartkevics, V., Juhanson, J., & Muter, O. (2013). Microbial community changes in TNT spiked soil bioremediation trial using biostimulation, phytoremediation and bioaugmentation. Journal of Environmental Engineering and Landscape Management, 21, 153–162.

    Google Scholar 

  • Pal, A., & Paul, A. K. (2004). Aerobic chromate reduction by chromium-resistant bacteria isolated from serpentine soil. Microbiological Research, 159, 347–354.

    CAS  Google Scholar 

  • Pal, S., Qureshi, A., & Purohit, H. J. (2016). Antibiofilm activity of biomolecules: Gene expression study of bacterial isolates from brackish and fresh water biofouled membranes. Biologia, 71, 239–246.

    CAS  Google Scholar 

  • Pandey, G., & Jain, R. K. (2002). Bacterial chemotaxis toward environmental pollutants: Role in bioremediation. Applied and Environmental Microbiology, 68, 5789–5795.

    CAS  Google Scholar 

  • Parsek, M. R., McFall, S. M., Shinabarger, D. L., & Chakrabarty, A. M. (1994). Interaction of two LysR-type regulatory proteins CatR and ClcR with heterologous promoters: Functional and evolutionary implications. PNAS, 91, 12393–12397.

    CAS  Google Scholar 

  • Paul, D., Pandey, G., Pandey, J., & Jain, R. K. (2005). Accessing microbial diversity for bioremediation and environmental restoration. Trends in Biotechnology, 23, 135–142.

    CAS  Google Scholar 

  • Pessi, G., Williams, F., Hindle, Z., Heurlier, K., Holden, M. T., Camara, M., Haas, D., & Williams, P. (2001). The global posttranscriptional regulator RsmA modulates production of virulence determinants and N-acylhomoserine lactones in Pseudomonas aeruginosa. Journal of Bacteriology, 183, 6676–6683.

    CAS  Google Scholar 

  • Qin, G., Gong, D., & Fan, M.-Y. (2013). Bioremediation of petroleum- contaminated soil by biostimulation amended with biochar. International Biodeterioration and Biodegradation, 85, 150–155.

    CAS  Google Scholar 

  • Qureshi, A., Mohan, M., Kanade, G. S., Kapley, A., & Purohit, H. J. (2009). In situ bioremediation of organochlorine-pesticide-contaminated microcosm soil and evaluation by gene probe. Pest Management Science, 65, 798–804.

    CAS  Google Scholar 

  • Qureshi, A., Pal, S., Ghosh, S., Kapley, A., & Purohit, H. J. (2015). Antibiofouling biomaterials. International Journal of Recent Advances in Multidisciplinary Research (IJRAMR), 2, 677–684.

    Google Scholar 

  • Rajaei, S., Seyedi, S. M., Raiesi, F., Shiran, B., & Raheb, J. (2013). Characterization and potentials of indigenous oil-degrading bacteria inhabiting the rhizosphere of wild oat (Avena Fatua L.) in South West of Iran. Iranian Journal of Biotechnology, 11, 32–40.

    CAS  Google Scholar 

  • Romeo, T. (1998). Global regulation by the small RNA-binding protein CsrA and the non-coding RNA molecule CsrB. Molecular Microbiology, 29, 1321–1330.

    CAS  Google Scholar 

  • Rost, R., Haas, S., Hammer, E., Herrmann, H., & Burchhardt, G. (2002). Molecular analysis of aerobic phenylacetate degradation in Azoarcus evansii. Molecular Genetics and Genomics, 267, 656–663.

    CAS  Google Scholar 

  • Sakuragi, Y., & Kolter, R. (2007). Quorum-sensing regulation of the biofilm matrix genes (pel) of Pseudomonas aeruginosa. Journal of Bacteriology, 189, 5383–5386.

    CAS  Google Scholar 

  • Salinero, K. K., Keller, K., Feil, W. S., Feil, H., Trong, S., Di Bartolo, G., & Lapidus, A. (2009). Metabolic analysis of the soil microbe Dechloromonas aromatica str. RCB: Indications of a surprisingly complex life-style and cryptic anaerobic pathways for aromatic degradation. BMC Genomics, 10, 23.

    Google Scholar 

  • Santisi, S., Cappello, S., Catalfamo, M., Mancini, G., Hassanshahian, M., Genovese, L., & Yakimov, M. M. (2015). Biodegradation of crude oil by individual bacterial strains and a mixed bacterial consortium. Brazilian Journal of Microbiology, 46, 377–387.

    Google Scholar 

  • Shirtliff, M. E., Mader, J. T., & Camper, A. K. (2002). Molecular interactions in biofilms. Chemistry & Biology, 9, 859–871.

    Google Scholar 

  • Shrout, J. D., & Nerenberg, R. (2012). Monitoring bacterial twitter: Does quorum sensing determine the behavior of water and wastewater treatment biofilms? Environmental Science & Technology, 46, 1995–2005.

    CAS  Google Scholar 

  • Shukla, S. K., Mangwani, N., Rao, T. S., & Das, S. (2014). Biofilm-mediated bioremediation of polycyclic aromatic hydrocarbons. In Microbial biodegradation and bioremediation (pp. 203–232). London/Waltham: Elsevier.

    Google Scholar 

  • Singh, R., Paul, D., & Jain, R. K. (2006). Biofilms: Implications in bioremediation. Trends in Microbiology, 56, 389–397.

    Google Scholar 

  • Stankowska, D., Czerwonka, G., Rozalska, S., Grosicka, M., Dziadek, J., & Kaca, W. (2012). Influence of quorum sensing signal molecules on biofilm formation in Proteus mirabilis O18. Folia Microbiologica, 57, 53–60.

    CAS  Google Scholar 

  • Suenaga, H., Koyama, Y., Miyakoshi, M., Miyazaki, R., Yano, H., Sota, M., Ohtsubo, Y., Tsuda, M., & Miyazaki, K. (2009). Novel organization of aromatic degradation pathway genes in a microbial community as revealed by metagenomic analysis. ISME, 3, 1335–1348.

    CAS  Google Scholar 

  • Tam, L. T., Eymann, C., Albrecht, D., Sietmann, R., Schauer, F., Hecker, M., & Antelmann, H. (2006). Differential gene expression in response to phenol and catechol reveals different metabolic activities for the degradation of aromatic compounds in Bacillus subtilis. Environmental Microbiology, 8, 1408–1427.

    CAS  Google Scholar 

  • Tan, Y., & Ji, G. (2010). Bacterial community structure and dominant bacteria in the rhizosphere of two endemorelict plants capable of degrading a broad range of aromatic substrates. Applied Microbiology and Biotechnology, 91, 1227–1238.

    Google Scholar 

  • Veeranagouda, Y., Emmanuel Paul, P. V., Gorla, P., Siddavattam, D., & Karegoudar, T. B. (2006). Complete mineralisation of dimethylformamide by Ochrobactrum sp. DGVK1 isolated from the soil samples collected from the coalmine leftovers. Applied Microbiology and Biotechnology, 71, 369–375.

    CAS  Google Scholar 

  • Verhamme, D. T., Kiley, T. B., & Stanley-Wall, N. R. (2007). DegU co-ordinates multicellular behaviour exhibited by Bacillus subtilis. Molecular Microbiology, 65, 554–568.

    CAS  Google Scholar 

  • Whiteley, C. G., & Lee, D. J. (2006). Enzyme technology and biological remediation. Enzyme and Microbial Technology, 38, 291–316.

    CAS  Google Scholar 

  • Xu, J., Yu, Y., Wang, P., Guo, W., Dai, S., & Sun, H. (2007). Polycyclic aromatic hydrocarbons in the surface sediments from Yellow River, China. Chemosphere, 67, 1408–1414.

    CAS  Google Scholar 

  • Yan, S., & Wu, G. (2017). Reorganization of gene network for degradation of polycyclic aromatic hydrocarbons (PAHs) in Pseudomonas aeruginosa PAO1 under several conditions. Journal of Applied Genetics, 58, 545–563.

    CAS  Google Scholar 

  • Yang, L., Barken, K. B., Skindersoe, M. E., Christensen, A. B., Givskov, M., & Tolker-Nielsen, T. (2007). Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa. Microbiology, 153, 1318–1328.

    CAS  Google Scholar 

  • Yong, Y. C., & Zhong, J. J. (2013). Regulation of aromatics biodegradation by rhl quorum sensing through induction of catechol meta-cleavage pathway. Bioresource Technology, 136, 761–765.

    CAS  Google Scholar 

  • Zhang, S., & Huang, H. (2005). Geochemistry of Palaeozoic marine petroleum from the Tarim Basin, NW China: Part 1. Oil family classification. Organic Geochemistry, 36, 1204–1214.

    CAS  Google Scholar 

  • Zhang, Z., Hou, Z., Yang, C., Ma, C., Tao, F., & Xu, P. (2011). Degradation of n-alkanes and polycyclic aromatic hydrocarbons in petroleum by a newly isolated Pseudomonas aeruginosa DQ8. Bioresource Technology, 102, 4111–4116.

    CAS  Google Scholar 

Download references

Acknowledgement

All the authors are thankful to Director CSIR-NEERI for constant support and inspiration and providing infrastructural facilities (KRC\2018\June\EBGD\1). The authors are grateful to the Council of Scientific and Industrial Research (CSIR), to Senior Research Fellowship (19-06/2011(i) EU-IV) and to Ms. Saheli Ghosh. Funds from DBT (BT/PR16149/NER/95/85/2015) projects are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asifa Qureshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghosh, S., Qureshi, A., Purohit, H.J. (2019). Aromatic Compounds and Biofilms: Regulation and Interlinking of Metabolic Pathways in Bacteria. In: Arora, P. (eds) Microbial Metabolism of Xenobiotic Compounds. Microorganisms for Sustainability, vol 10. Springer, Singapore. https://doi.org/10.1007/978-981-13-7462-3_7

Download citation

Publish with us

Policies and ethics